Preferred Language
Articles
/
QxbSr4cBVTCNdQwCnFtR
Human recognition by utilizing voice recognition and visual recognition
...Show More Authors

Audio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some area such as W.C. or sleeping room. Thus, its commonly difficult to identify any movement or breakthrough process, on the other hand when need to pursue suspect when enter a building or party to identify his location and/or listen to his speech only and isolate it from other voices or noises, the other. Hence, the use of the hybrid combination technique is very effective. In this work, we proposed a multimodal human recognition approach that utilizes both the face and audio and is based upon a deep convolutional neural network (CNN). Mainly, to solve the challenge of not capturing part of the body, final results of recognizing via separate CNNs of VGG Face16 and ResNet50 are joined together depending on the score-level combination by Weighted Sum rule to enhance recognition performance. The results show that the proposed system success to recognise each person from his voice and/or his face captured. In addition, the system can separate the person voice and isolate it from noisy environment and determine the existence of desired person.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Implementation of Machine Learning Techniques for the Classification of Lung X-Ray Images Used to Detect COVID-19 in Humans
...Show More Authors

COVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe

... Show More
View Publication Preview PDF
Scopus (36)
Crossref (18)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Lecture Notes Of The Institute For Computer Sciences, Social Informatics And Telecommunications Engineering
Sensor Data Classification for the Indication of Lameness in Sheep
...Show More Authors

View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
A Survey on Feature Selection Techniques using Evolutionary Algorithms
...Show More Authors

     Feature selection, a method of dimensionality reduction, is nothing but collecting a range of appropriate feature subsets from the total number of features. In this paper, a point by point explanation review about the feature selection in this segment preferred affairs and its appraisal techniques are discussed. I will initiate my conversation with a straightforward approach so that we consider taking care of features and preferred issues depending upon meta-heuristic strategy. These techniques help in obtaining the best highlight subsets. Thereafter, this paper discusses some system models that drive naturally from the environment are discussed and calculations are performed so that we can take care of the prefe

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Science
Heart Disease Classification–Based on the Best Machine Learning Model
...Show More Authors

    In recent years, predicting heart disease has become one of the most demanding tasks in medicine. In modern times, one person dies from heart disease every minute. Within the field of healthcare, data science is critical for analyzing large amounts of data. Because predicting heart disease is such a difficult task, it is necessary to automate the process in order to prevent the dangers connected with it and to assist health professionals in accurately and rapidly diagnosing heart disease. In this article, an efficient machine learning-based diagnosis system has been developed for the diagnosis of heart disease. The system is designed using machine learning classifiers such as Support Vector Machine (SVM), Nave Bayes (NB), and K-Ne

... Show More
View Publication Preview PDF
Scopus (12)
Scopus Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
...Show More Authors
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Aug 31 2021
Journal Name
Iraqi Journal Of Science
Application of Neural Network Analysis for Seismic Data to Differentiate Reservoir Units of Yamama Formation in Nasiriya Oilfield A Case Study in Southern Iraq
...Show More Authors

      The EMERGE application from Hampsson-Russell suite programs was used in the present study. It is an interesting domain for seismic attributes that predict some of reservoir three dimensional or two dimensional properties, as well as their combination. The objective of this study is to differentiate reservoir/non reservoir units with well data in the Yamama Formation by using seismic tools. P-impedance volume (density x velocity of P-wave) was used in this research to  perform a three dimensional seismic model on the oilfield of Nasiriya by using post-stack data of  5 wells. The data (training and application) were utilized in the EMERGE analysis for estimating the reservoir properties of P-wave ve

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Jan 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A parallel Numerical Algorithm For Solving Some Fractional Integral Equations
...Show More Authors

In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm
...Show More Authors

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
View Publication Preview PDF
Crossref (2)
Crossref