Physics and applied mathematics form the basis for understanding natural phenomena using differential equations depicting the flow in porous media, the motion of viscous liquids, and the propagation of waves. These equations provide a thorough study of physical processes, enhancing the understanding of complex applications in engineering, technology, and medicine. This paper presents novel approximate solutions for the Darcy-Brinkmann-Forchheimer moment equation, the Blasius equation and the FalknerSkan equation with initial / boundary conditions by using two iterative methods: the variational iteration method and the optimal variational iteration method. The variational iteration method is effectively developed by adding a control paramete
... Show MoreIn this study, a brand-new double transform known as the double INEM transform is introduced. Combined with the definition and essential features of the proposed double transform, new findings on partial derivatives, Heaviside function, are also presented. Additionally, we solve several symmetric applications to show how effective the provided transform is at resolving partial differential equation.
In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (H
... Show MoreIn the past two decades, maritime transport traffic has increased, especially in the case of container flow. The BAP (Berth Allocation Problem) (BAP) is a main problem to optimize the port terminals. The current manuscript explains the DBAP problems in a typical arrangement that varies from the conventional separate design station, where each berth can simultaneously accommodate several ships when their entire length is less or equal to length. Be a pier, serve. This problem was then solved by crossing the Red Colobuses Monkey Optimization (RCM) with the Genetic Algorithm (GA). In conclusion, the comparison and the computational experiments are approached to demonstrate the effectiveness of the proposed method contrasted with other
... Show MoreIn this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.
In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.