Background: Fetal macrosomia is usually distressing to obstetricians and neonatologists. In the current study, involved mothers had poor social and medical circumstances, as they were migrated forcefully within the country borders due to war, from their original homeland to safer camps which had miserable situations. Objectives: To study rate, risk factors, and complications of macrosomia in people with low socio-economic living conditions and missed medical follow up. Methods: All internally displaced pregnant women who gave birth to neonates weighed ≥4000 g were involved in the study. All required history, examination, care, and investigations were practiced by the attending obstetrician and neonatologist. Cases of normal birth weight neonates from the same sample of internally moved mothers were considered as controls. Results: Fetal macrosomia rate was 15.77% (143 out of 907). Observed significant macrosomia risk factors were maternal age ≥30 years, multiparity, body mass index ≥30, previous or family history of macrosomia, gestational age >40 weeks, cesarean section, diabetes, and hypertension. Meconium- stained liquor, shoulder dystocia, uterine atony, and genital trauma, were major maternal complications, while main neonatal sequelae were Apgar score (>7) at first minute, birth asphyxia, admission to NICU, hypoglycemia, polycythemia, and respiratory distress. Conclusion: Higher rate and more frequently encountered risk factors of macrosomia than national and international figures found in our sample (of forcefully moved mothers) were probably related to poor living circumstances, and absence of regular medical follow up with antenatal care.
Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were syn
... Show MoreGypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
Biosorption is an effective method to remove toxic metals from wastewaters. In this study biosorption of lead and chromium ions from solution was studied using Citrobacter freundii and Citrobacter kosari isolated from industrial wastewater. The experimental results showed that optimum grwoth temperature for both bacteria is 30oC and the optimum pH is 7 &6 for C. freundii and C. kosari respectively. While the optimum incubation period to remove Pb and Cr for C. freundii and C. kosari is 4 days and 3days respectively. Also the biosorption of Pb and Cr in mixed culture of bacteria and mixed culture of Pb and Cr was investigated. Result indicate that uptake of Cr and Pb for C.freundii, C. kosari and in mixes culture of both bacteria is 58%, 53%
... Show MoreThe combination of carbon nanotubes (CNT) and conducting polymers offers an attractive route for the production of novel compounds that can be used in a variety of applications such as sensors, actuators, and molecular scale electronic devices. In this work, functionalized multiwall carbon nanotubes (f-MWCNTs) were added in different load ratios (3 wt%, 5 wt% and 10 wt%) to thiophen (PTh) polymer to procedure PTh/CNTs nanocomposite and deposited on porous silicon substrate by electropolarization. Photoconductive detectors were fabricated using PTh/f-MWCNTs matrix to work in the near region and middle IR regions. These detectors were illuminated by semiconductor laser diode wavelength of 808(nm) and Nd-YAG laser of wavelength 1064 (n
... Show MoreThe research involves preparing gold nanoparticles (AuNPs) and studying the factors that influence the shape, sizes and distribution ratio of the prepared particles according to Turkevich method. These factors include (reaction temperature, initial heating, concentration of gold ions, concentration and quantity of added citrate, reaction time and order of reactant addition). Gold nanoparticles prepared were characterized by the following measurements: UV-Visible spectroscopy, X-ray diffraction and scanning electron microscopy. The average size of gold nanoparticles was formed in the range (20 -35) nm. The amount of added citrate was changed and studied. In addition, the concentration of added gold ions was changed and the calibration cur
... Show MoreIn this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectro
... Show MoreIn this work, the study of
This research explores the obstacles teachers encounter in executing the smart schools initiative within the framework of Iraq, where educational facilities and digital preparedness are still at an early stage. Although worldwide trends reveal the growing use of smart technologies in education, Iraq has been hindered by systemic barriers, such as archaic curricula, restricted access to technologies, and an unqualified teaching staff. Data were collected using a validated questionnaire on 122 public school teachers working in Baghdad with a descriptive-analytical methodology. The study divided challenges into five areas: infrastructure, teacher preparedness, administrative support, curricular adaptation and cultural resistanc
... Show MoreStructural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v
This study was conducted to determine the activity of plant Sesbania rostrata and two isolate from arbuscular mycorrhizae fungi (A,B) as a bioremediation of soil polluted by cadmium and lead elements in north and south of Baghdad city. The results showed that the average of soil pollution by cadmium and lead elements in north of Baghdad was less than the average of soil pollution in the south of Baghdad which recorded 10.0, 9.0 mg/kg and 27.0, 25.0 mg/kg respectively. The plant Sesbania recorded ability to accumulate the lead element in shoot system 19.65 mg/kg and in root system 27.2 mg/kg and for cadmium element 19.6, 24.6 mg/kg in shoot and root respectively. The results showed that the isolate A from soil pollution is more effected
... Show More