The petrophysical analysis is significant to determine the parameters controlling the production wells and the reservoir quality. In this study, Using Interactive petrophysics software to analyze the petrophysical parameters of five wells penetrated the Zubair reservoir in the Abu-Amood field to evaluate a reservoir and search for hydrocarbon zones. The available logs data such as density, sonic, gamma ray, SP, neutron, and resistivity logs for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5 were used to determine the reservoir properties in Zubair reservoir. The density-neutron and neutron-sonic cross plots, which appear as lines with porosity scale ticks, are used to distinguish between the three main lithologies of sandstone, limestone, and dolomite. The corrected gamma ray log was used in all wells to determine the shale volume. Neutron-sonic log was used to calculate porosity at the reservoir unit while sonic log was employed to estimate the porosity at poor hole conditions and (non- reservoir units). Furthermore, the Indonesia model was used to calculate water saturation in Zubair reservoir and compared with the Archie model. Finally, Flow zone indicator method was used for permeability evaluation. The results show that the Zubair reservoir is primarily consists of sandstone, shale with compacted limestone, which was improved by the cuttings description report. The core porosity was validated in AMM-1, AMM-2, AMM-3and AMM-5 wells. Indonesia equation provides an optimum estimation in shaly sand zones since the Archie model takes the matrix conductive and the fluid conductivity into account. Four hydraulic flow units produced from reservoir quality index against normalized porosity index cross plot and obtained Four equations from porosity- permeability relationship of core data. The general interpretation presented that the most of hydrocarbons are located in depth (3332.8 m to 3415.8 m) which represents the best layer in Zubair reservoir, the properties of this layer in well AMM-1better than in well AMM-2. Finally, the layer from 3574.8 m to3638.3 m supposed to be water layer rather than hydrocarbon layer.
The reaction of LAs-Cl8 : [ (2,2- (1-(3,4-bis(carboxylicdichloromethoxy)-5-oxo-2,5- dihydrofuran-2-yl)ethane – 1,2-diyl)bis(2,2-dichloroacetic acid)]with sodium azide in ethanol with drops of distilled water has been investigated . The new product L-AZ :(3Z ,5Z,8Z)-2- azido-8-[azido(3Z,5Z)-2-azido-2,6-bis(azidocarbonyl)-8,9-dihydro-2H-1,7-dioxa-3,4,5- triazonine-9-yl]methyl]-9-[(1-azido-1-hydroxy)methyl]-2H-1,7-dioxa-3,4,5-triazonine – 2,6 – dicarbonylazide was isolated and characterized by elemental analysis (C.H.N) , 1H-NMR , Mass spectrum and Fourier transform infrared spectrophotometer (FT-IR) . The reaction of the L-AZ withM+n: [ ( VO(II) , Cr(III) ,Mn(II) , Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) and Hg(II)] has been i
... Show MoreIn this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More