The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-exposure time during the adsorption process of methyl violet dye (MV) from aqueous solutions and achieved higher removal at normal temperature and pH. The Halsey and the Langmuir models were the most appropriate models for representing the equilibrium data with a maximum adsorption capacity of 108.7 mg/g. The kinetic studies showed that the pseudo-second-order kinetics model and Elovich model were the most suitable models to describe the experimental data which indicated the MV adsorption by NYC has a chemical nature. Also, the interpretation of data by the Boyd model demonstrated that the adsorption process of MV was determined by both film diffusion and intra-particle diffusion. The adsorption process of MV by NYC is spontaneous, feasible, and exothermic. The regeneration performance showed that the NYC can be easily regenerated and reused with keeping an acceptable performance until the fourth cycle. Eventually, this study confirmed that the greenly prepared composite can serve as an adorable adsorbent for the removal of cationic dyes such as methyl violet under mild conditions.
الصيغة العامة للمعقدات الجديدة [M2(BDS)Cl4] الناتجة من تفاعل الليكاند الجديد] ن1,ن4-ثنائي(1أ –بنزو]د[ اميدازول-2-يل)-ن1,ن4-ثنائي(4-ثنائي مثيل امينو) بنزيل) سكسنمايد[ (BDS) مع الايونات الفلزية الكادميوم, الكوبلت, الزئبق, النحاس والنيكل. تم اشتقاق هذا الليكاند من تفاعل المواد الثلاث 4-(ثنائي ميثيل أمينو) بنزالدهيد، 2-أمينو بنزيميدازول، وكلوريد السكسينيل. تم تشخيص المركبات باستخدام مطيافية طيف الاشعة تحت الحمراء وطيف الرن
... Show MoreThe new Schiff base, namely (2-Amino-phenylimino)-acetic acid (L) was prepared
from condensation of glyoxylic acid with o-phenylene diamine. The structure (L) was
characterized by, IR,
1
H,
13
C-NMR and CHN analysis. Metal complexes of the ligand (L)
were synthesized and their structures were characterized by Atomic absorption, IR and UV-Visible spectra, molar conductivity, magnetic moment and molar ratio determination (Co
+2
,
Cd
+2
) complexes. All complexes showed octahedral geometries.
In the present work, the phthalic acid (phthH2) and 1.10 phenonthroline (phen), and their complexes were synthesized and isolated as [M(phth)(phen)2], Mn(II), Fe(II), Co(II), Ni(II) Cu(II), Zn(II), and Cd(II) ions. These complexes were characterized by elemental analysis, melting point, conductivity, percentage metal, UV–Vis, FT-IR, and magnetic moment measurements. The molar conductance indicates that all the metal complexes in DMSO are nonelectrolytic. phthalic acid (phtha), and 1,10-Phenanthroline (phen), behaved as bidentate, coordinating to the metal ion through their two oxygen and two pyridinyl nitrogen atoms respectively, as corroborated by. Electronic spectra, FTIR, spectroscopy amusement indicated that all the metal complexes ad
... Show MoreThis study investigates the results of electrocoagulation (EC) using aluminum (Al) electrodes as anode and stainless steel (grade 316) as a cathode for removing silica, calcium, and magnesium ions from simulated cooling tower blowdown waters. The simulated water contains (50 mg/l silica, 508 mg/l calcium, and 292 mg/l magnesium). The influence of different experimental parameters, such as current density (0.5, 1, and 2 mA/cm2), initial pH(5,7, and 10), the temperature of the simulated solution(250C and 35 0C), and electrolysis time was studied. The highest removal efficiency of 80.183%, 99.21%, and 98.06% for calcium, silica, and magnesium ions, respectively, were obtained at a current de
... Show MoreDora petroleum refinery waste water is the one of the important source of pollution by priority pollutant aromatic compound discharged to Tigris river in Iraq. the station has waste water treatment unit contains many treatment subunits The most important sub units is :skimmer units ,physiochemical unit ,daf unit, biological unit. The aim of research project is to study the ability of unit to remove the priority pollutant aromatic compound and follow up these compounds in river to study ability of river to self removal. A solid phase extraction (SPE) followed by high performance liquid chromatography-ultra violet (HPLC-UV) technique is depicted for the quantitative estimation of benzidines and phenols. Experimental studies were performed to
... Show MoreA metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The
... Show MoreNon-orthogonal Multiple Access (NOMA) is a multiple-access technique allowing multiusers to share the same communication resources, increasing spectral efficiency and throughput. NOMA has been shown to provide significant performance gains over orthogonal multiple access (OMA) regarding spectral efficiency and throughput. In this paper, two scenarios of NOMA are analyzed and simulated, involving two users and multiple users (four users) to evaluate NOMA's performance. The simulated results indicate that the achievable sum rate for the two users’ scenarios is 16.7 (bps/Hz), while for the multi-users scenario is 20.69 (bps/Hz) at transmitted power of 25 dBm. The BER for two users’ scenarios is 0.004202 and 0.001564 for
... Show MoreAbstract:Porous Silicon (PSi) has been produced in this work by using Photochemical (PC) etching process by using a hydrofluoric acid (HF) solution. The irradiation has been achieved using quartz- tungsten halogen lamp. The influence of various irradiation times on the properties of PSi اmaterial such as layer thickness, etching rate and porosity was investigated in this work too. The XRD has been studied to determine the crystal structure and the crystalline size of PSi material