The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-exposure time during the adsorption process of methyl violet dye (MV) from aqueous solutions and achieved higher removal at normal temperature and pH. The Halsey and the Langmuir models were the most appropriate models for representing the equilibrium data with a maximum adsorption capacity of 108.7 mg/g. The kinetic studies showed that the pseudo-second-order kinetics model and Elovich model were the most suitable models to describe the experimental data which indicated the MV adsorption by NYC has a chemical nature. Also, the interpretation of data by the Boyd model demonstrated that the adsorption process of MV was determined by both film diffusion and intra-particle diffusion. The adsorption process of MV by NYC is spontaneous, feasible, and exothermic. The regeneration performance showed that the NYC can be easily regenerated and reused with keeping an acceptable performance until the fourth cycle. Eventually, this study confirmed that the greenly prepared composite can serve as an adorable adsorbent for the removal of cationic dyes such as methyl violet under mild conditions.
This paper is submitted as anew approach to simulate manufacturing control & planning system to define the problem of designing control system on the needs for materials.
Production planning & control is a total and complex operation, resides in the essence of manufacturing companies operations. The successful process of production planning and control systems is critical for the staying of manufacturing organizations in markets leading to the increasing consumer competition and which dominate most of manufacturing sectors because of the market oriented economy , thus , what has happened previously , that the companies possessed a great inventory of crude material, components, and groupings and they use in flexible techni
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreIn this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreBackground: Repeated teenage pregnancy is a major burden on the healthcare system worldwide. Objective: We aimed to compare teenagers with their first and third pregnancies and to evaluate the likelihood of neonatal complications. Materials and Methods: This cross-sectional study was performed on female teenagers (aged ≤ 19 yr) with singleton pregnancies. The subjects (n = 298) were screened over 12 months. Ninety-six women were excluded, based on the exclusion criteria. The remaining subjects (n = 202) were divided into two groups: teenagers with first pregnancy (n = 96) and teenagers with third pregnancy (n = 47). The subjects were observed throughout pregnancy and delivery. The final sample size of the first and thi
... Show MoreThere is no access to basic sanitation for half the world's population, leading to Socioeconomic issues, such as scarcity of drinking water and the spread of diseases. In this way, it is of vital importance to develop water management technologies relevant to the target population. In addition, in the separation form of water treatment, the compound often used as a coagulant in water treatment is aluminum sulfate, which provides good results for raw water turbidity and color removal. Studies show, however, that its deposition in the human body, even Alzheimer's disease, can cause serious harm to health and disease development. The study aims to improve the coagulation/flocculation stage related to the amount of flakes, i
... Show MoreNew Schiff base, namely [2-(carboxy methylene-amino)-phenyl imino] acetic acid (L) and its some metal complexes [LCo.2H2O], [LNi.2H2O], [LCu].3H2O, [LCd.2H2O], [LHg.2H2O] and [LPb.2H2O], were reported and characterized by elemental analysis, metal content, spectroscopic methods, magnetic moments and conductivity measurements, it is found that the geometrical structures of these complexes are octahedral [Co(II), Ni(II), Cd(II), Hg(II), Pb(II) and square planar Cu(II).The complexes have been found to posses 1:1 (M:L) stoichiometry
New nitrone and selenonitrone compounds were synthesized. The condensation method between N-(2-hydroxyethyl) hydroxylamine and substituted carbonyl compounds such as [benzil, 4, 4́-dichlorobenzil and 2,2́ -dinitrobenzil] afforded a variety of new nitrone compounds while the condensation between N-benzylhydroxylamine and substituted selenocarbonyl compounds such as [di(4-fluorobenzoyl) diselenide and (4-chlorobenzoyl selenonitrile] obtained selenonitrone compounds. The condensation of N-4-chlorophenylhydroxylamine with dibenzoyl diselenide obtained another type of selenonitrone compounds. The structures of the synthesized compounds were assigned based on spectroscopic data (FT-IR,
... Show More