Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pressure (0.1 to 20 MPa), temperature (23 to 70 °C), and salinity (0 to 20wt% NaCl) during CO2/water interfacial tension (IFT) measurements. Moreover, to mimic all potential scenarios several nanofluids at different and NPs load were used. IFT of CO2/nanofluid system was measured using the pendant drop method as it is convenient and flexible technique, particularly at the high-pressure and high-temperature condition. Experimentally, a nanofluid droplet is allowed to hang from one end of a dispensing needle with the presence of CO2 at the desired pressure and temperature. Regardless of the effects of CO2-pressure, temperature, and salt concentration on the IFT of the CO2/nanofluid system, NPs have shown a limited effect on IFT reduction. Remarkably, increased NPs concentration (from 0.01 to 0.05 wt%) can noticeably reduce IFT of the CO2-nanofluid system. However, no further reduction in IFT values was noticed when the NPs load was ≥ 0.05 wt%. Salinity, on the other hand, showed a dramatic impact on IFT and also on the ability of NPs to reduce IFT. Results showed that IFT increases with salinity particularly at relatively low pressures (≤ 5 MPa). Moreover, increased salinity can eliminate the effect of NPs on IFT. Interestingly, the initial NP size has no influence on the ability of NPs to reduce IFT. Consequently, the potential nanofluid-flooding processes during EOR have no negative effect on the later CO2-geosequestration projects.
A step to net-zero of carbon dioxide losses in the microalgae cultivation process was targeted in the current study. This research was carried out by using pre-dissolved inorganic carbon (DIC) as a source of carbon with two doses of twenty-five and fifty millilitres.
Carbon nanotubes were prepared by an arc-discharge method,
under different values of pressure of oxygen gas. The structure of
multi-walled carbon nanotubes powders has been characterized by
low-angle X-ray diffraction .The morphology of carbon nanotube
powder was examined by transmission electron microscope. The
capacitance-voltage and current- voltage (dark and illumination
current) characterization were measured under different values of
pressure (10-3, 10-4, 10-5) mbar of oxygen gas
The development of the perforated fin had proposed in many studies to enhance the heat transfer from electronic pieces. This paper presents a novel derivative method to find the temperature distribution of the new design (inclined perforated) of the pin fin. Perforated with rectangular section and different angles of inclination was considered. Signum Function is used for modeling the variable heat transfer area. Set of parameters to handle the conduction and convection area were calculated. Degenerate Hypergeometric Equation (DHE) was used for modeling the Complex energy differential equation and then solved by Kummer’s series. In the validation process, Ansys 16.0-Steady State Thermal was used. Two geometric models were consider
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
The optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.