Nanoparticles (NPs) based techniques have shown great promises in all fields of science and industry. Nanofluid-flooding, as a replacement for water-flooding, has been suggested as an applicable application for enhanced oil recovery (EOR). The subsequent presence of these NPs and its potential aggregations in the porous media; however, can dramatically intensify the complexity of subsequent CO2 storage projects in the depleted hydrocarbon reservoir. Typically, CO2 from major emitters is injected into the low-productivity oil reservoir for storage and incremental oil recovery, as the last EOR stage. In this work, An extensive serious of experiments have been conducted using a high-pressure temperature vessel to apply a wide range of CO2-pressure (0.1 to 20 MPa), temperature (23 to 70 °C), and salinity (0 to 20wt% NaCl) during CO2/water interfacial tension (IFT) measurements. Moreover, to mimic all potential scenarios several nanofluids at different and NPs load were used. IFT of CO2/nanofluid system was measured using the pendant drop method as it is convenient and flexible technique, particularly at the high-pressure and high-temperature condition. Experimentally, a nanofluid droplet is allowed to hang from one end of a dispensing needle with the presence of CO2 at the desired pressure and temperature. Regardless of the effects of CO2-pressure, temperature, and salt concentration on the IFT of the CO2/nanofluid system, NPs have shown a limited effect on IFT reduction. Remarkably, increased NPs concentration (from 0.01 to 0.05 wt%) can noticeably reduce IFT of the CO2-nanofluid system. However, no further reduction in IFT values was noticed when the NPs load was ≥ 0.05 wt%. Salinity, on the other hand, showed a dramatic impact on IFT and also on the ability of NPs to reduce IFT. Results showed that IFT increases with salinity particularly at relatively low pressures (≤ 5 MPa). Moreover, increased salinity can eliminate the effect of NPs on IFT. Interestingly, the initial NP size has no influence on the ability of NPs to reduce IFT. Consequently, the potential nanofluid-flooding processes during EOR have no negative effect on the later CO2-geosequestration projects.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this article we study a single stochastic process model for the evaluate the assets pricing and stock.,On of the models le'vy . depending on the so –called Brownian subordinate as it has been depending on the so-called Normal Inverse Gaussian (NIG). this article aims as the estimate that the parameters of his model using my way (MME,MLE) and then employ those estimate of the parameters is the study of stock returns and evaluate asset pricing for both the united Bank and Bank of North which their data were taken from the Iraq stock Exchange.
which showed the results to a preference MLE on MME based on the standard of comparison the average square e
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreCalculating the Inverse Kinematic (IK) equations is a complex problem due to the nonlinearity of these equations. Choosing the end effector orientation affects the reach of the target location. The Forward Kinematics (FK) of Humanoid Robotic Legs (HRL) is determined by using DenavitHartenberg (DH) method. The HRL has two legs with five Degrees of Freedom (DoF) each. The paper proposes using a Particle Swarm Optimization (PSO) algorithm to optimize the best orientation angle of the end effector of HRL. The selected orientation angle is used to solve the IK equations to reach the target location with minimum error. The performance of the proposed method is measured by six scenarios with different simulated positions of the legs. The proposed
... Show MoreThe presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie
... Show MoreThis study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).