Some coordination complexes of Co(ІІ), Ni(ІІ), Cu(ІІ), Cd(ІІ) and Hg(ІІ) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(ІІ) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (ІІ) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligand [H4L] and its complexes are studied against (gram positive) and (gram negative) bacteria [Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus]. The proposed structure of the complexes using the program, Chem office (2006) and the general formula has been given for the prepared ligand complexes K2[M(H2L)2].
The preparation of some new coordination compounds for nikel (II), manganese (II), copper (II), cobalt (II)and mercury (II), with ligand obtained from Benzoinand2-amino pyridine.The ligand[6-(2-hydroxy-1,2-diphenylethylideneamino)pyridin-3-ylium)](L) was made from reactin ethanol with metal salts in (1:1)(metal : ligand)ratio.[MLCl] was the inclusive formula of the complexes where M= Mn(II),Co(II),Ni(II),Cu(II) and Hg(II). Metal analysis by electronic spectra, atomic absorption ,infrared spectra, 1H&13C-NMR(only ligand)spectral studies, magnetic moment and molar conductance measurements used to describe the compounds.The determinations indicated that the ligand coordinates with the metal (II) ion in neutral tridentate manner th
... Show MoreAbstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreThe snthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes of azo ligand 4-[(5-acetyl-2-aminophenyl)- diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one derived from 4-aminoantipyrine and 4-aminoacetophenone are reported. The nature of the compounds have been studied followed by mole ratio and methods of continuous contrast, Beer′s law followed during a condensation rate (1 × 10-4 – 3 × 10-4 M). The analytical data showed that all the complexes are in 1:2 metal-ligand ratio. An octahedral geometry have been suggested for all the compounds and biological studies of all the complexes were evaluated against different types of antimicrobial strains.
New metal complexes of the ligands 2-benzamido benzothiazole(B1), and 2-actamido benzothiazole(B2) with metal ions Ni(II),and Co(II) were prepared in alcoholic medium. The prepared complexes were characterized by FT-IR and electronic spectroscopy, Magnetic susceptibility, Flame Atomic Absorption technique as well as elemental analysis and conductivity measurement. From the spectral studies, an octahedral monomer structure proposed for Ni(II) complexes, and a tetrahedral monomer structure for Co(II)complexes.Semi-empirical methods (PM3,and ZINDO/1)were carried out to evaluate the heat formation( ?H?f)binding energy(?Eb) and dipole moment(µ)for all metal complexes. Also vibration frequencies, Electrostatic potential, HOMO and LUMO
... Show MoreA simple ,accurate and sensitive spectrophotometric method has been developed the determination of Cobalt(II) and Cupper (II) .The method is based on the chelation of Co(II) and Cu(II) ions with 4-(4´-pyrazolon azo) -2-Naphthol(APAN) in aqueous medium . The complexes have a maximum absorption at (513) and (506) nm and ? max 0.531×10 4 and 0.12×10 5 L.mol -1.cm -1 for Co(II) and Cu(II) respectively .The reagent and two complexes have been prepared in ethanolic solution.The stoichiometry of both complexes were found to be 1:2 (metal :legend) .The effects of various cations and anions on Co(II) and Cu(II) determination have been investigated .The stability constants and standard deviations for Co(II) and Cu(II) 0.291 x107 ,0.909X108 L.mol
... Show MoreIn this study, a new Azo ligand 5-((2-(1H-indol-2-yl)ethyl)diazinyl)-2-aminophenol is synthesized from a reaction of Tryptamine with 2-aminophenol. The ligand and their metal ion complexes Ni(II), Pd(II) , Pt(IV) and Au(III) have been synthesized and characterized by various analytical techniques, including elemental microanalysis, metal content, chloride-containing, measurement of electrical conductivity, magnetic susceptibility, 1H and 13C-NMR, FT-IR, UV-Vis, mass spectra (MS), and thermal analysis (TGA and DSC) curves. The DCS curve was used to calculate the thermodynamic parameters ΔH, ΔS, and ΔG. The characterization results promote the metal complexes of azo ligand structures. The results indicate that the
... Show MoreA new ligand complexes have been synthesis from reaction of metal ions of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with schiff base LH. 5-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-2-phenyl-2,4-dihydro-pyrazol-3-one, this ligand was characterized by Fourier transform infrared (FTIR), UV-vis, 1H, 13CNMR, and mass spectra. All complexes were characterized by techniques micro analysis C.H.N, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements and magnetic susceptibility. The ligand acts as bidentate, coordination through nitrogen atom from azomethin group and deprotonated phenolic oxygen atom. The spectroscopic and analytical measurements showed that
... Show MoreAzo ligand 4-((2-hydroxy-3,5-dimethylphenyl)diazenyl) benzoic acid was synthesized from 4-aminobenzoic acid and 2,4- dimethylphenol. Azo dye compounds have been characterized by different techniques (1H-NMR, UV-Vis and FT-IR). Metal chelates of (ZnII, CdII and HgII) have been synthesized with azo ligand (L). Produced compounds have been identified by using spectral studies, elemental analysis(C.H.N.) and conductivity. Produced metal chelates were studied using mole ratio as well sequences contrast types. Rate of concentration(1×10-4-3×10-4 Mole/L) sequence Beer's law. Compound solutions have been noticed height molar absorptivity. The addendum of ligand and compounds has applied as disperse dyes on cotton fabrics for antibacterial activit
... Show MoreHeavy metal consider as major environmental pollutants. Many of industrial wastewater effluents contain a wide range of these heavy metals. The adsorption of Cd2+ and Pb2+ metal ions from aqueous solution by activated carbon was studied. The results showed that maximum adsorption capacity occurred at 486.9×10-3 mg/kg for Pb2+ ion and 548.8×10-3 mg/kg for Cd2+ ion. The adsorption in a mixture of the metal ions had a balancing effect on the adsorption capacity of the activated carbon. The adsorption capacity of each metal ion was affected by the presence of other metal ions rather than its presence individually. The study showed the presence of other heavy metals attribute to the reduction in the activated carbon capacity, and the adsorp
... Show MoreIn this study, a low-cost biosorbent, dead mushroom biomass (DMB) granules, was used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physicochemical parameters, such as initial metal ion concentration, equilibrium time, pH value, agitation speed, particles diameter, and adsorbent dosage, were studied. Five mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich-Peterson, Sips, and Khan models. The best fit to the Pb(II) and Ni(II) biosorption results was obtained by Langmuir model with maximum uptake capacities of 44.67 and 29.17 mg/g for these two ions, respectively, w
... Show More