Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.
The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing
Hand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discover
... Show MoreHeart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms,
... Show MoreThe COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreCrime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o
Offline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters. In this paper a proposed method for Offline Arabic handwritten recognition. The proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and support vector machines (SVMs) to enhance the recognition accuracy. The proposed method experimented using (AHDB) database. The experiment result show (99.08) recognition rate.
A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.
Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are
... Show More