Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.
The research aims to (identify the applications of pedagogy in art education), the research community included, art education for the primary stage, so the community consisted of (8) main areas in art education, either the research sample was chosen, two main areas (objectives, and content), and included the research methodology (descriptive and analytical), the researcher built the research tool represented (the validity form of the tool) and presented to a group of experts to indicate its validity as well as to measure its stability, To show the results, the researcher used the percentage, and the researcher recommended - modifying the curriculum every period of time, such as every four years, others
The simulation is the oldest theory in art, since it appeared in the Greek aesthetic thought of the philosopher Plato, as we find in many of the thinkers and philosophers over a wide period of time to reach our world today. Our fascination with art in general and design art in particular is due to the creativity and innovations of the artist through the simulation, as well as the peculiarities in this simulation, which give objects signs and signals that may have an echo that sometimes does not exist in their physical reality.
The real representation of life and design construction, descriptions of the expression of each of them in the form of intellectual construction and the ideas of producti
... Show MoreThe research aims to develop alternatives to transportation at the entrance to the Educational City (University of Baghdad) during the morning and evening peaks, which result from of the traffic congestion at the entrances to the educational city (the University of Baghdad), and affects the emotional, functional, and social performance of the whole city, and leads to hotbeds of confluence and congestion at the entrances in the morning and evening peaks. This movement was measured on the ground for pedestrians and vehicles. Some criteria were adopted to determine the density of road length to the area and density of roads for the number of users and the rate of the area served by roads. The research reviews the experiences of some
... Show MoreToday, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.
Statistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show More