Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensities. In the third stage, the boundary of the target object is extracted, and in the fourth and fifth stages, respectively, the region of interest (ROI) is highlighted and reconstructed. Our model was tested and evaluated using realistic scenarios which include outdoor and indoor scenes. The results reflect the ability of our approach to detect and remove shadows and reconstruct a shadow free image with a small error of approximately 6%.
A field experiment was carried out at University of Baghdad, College of Agricultural Engineering Sciences during fall season of 2020 and spring season of 2021. This study was aimed evaluate the effect of the organic fertilizer and boron foliar on the yield of potatoes for processing. The factorial experiment (5*4) within RCBD and three replicates. The organic fertilizer as palm peat at four levels (0, 12, 24 and 36 ton. ha-1) in addition to the chemical fertilizer recommendation treatment. Boron at four Concentrations 0, 100, 150 and 200 mg. L-1 . The results revealed significant different among application of organic fertilizer at the level of 24 ton. ha-1 and the foliar application of boron at a concentration of 100 mg. L-1 in the
... Show MoreNimodipine (NMD) is a dihydropyridine calcium channel blocker useful for the prevention and treatment of delayed ischemic effects. It belongs to class ? drugs, which is characterized by low solubility and high permeability. This research aimed to prepare Nimodipine nanoparticles (NMD NPs) for the enhancement of solubility and dissolution rate. The formulation of nanoparticles was done by the solvent anti-solvent technique using either magnetic stirrer or bath sonicator for maintaining the motion of the antisolvent phase. Five different stabilizers were used to prepare NMD NPs( TPGS, Soluplus®, HPMC E5, PVP K90, and poloxamer 407). The selected formula F2, in which Soluplus
has been utilized as a stabilizer, has a par
... Show MoreBackground: The disc prolapse is a common condition especially in young adults. Different levels are affected in the lumber region; the L4/L5 disc is more susceptible to longitudinal load and is the most common site of lumbar disc prolapse. The L5/S1 disc is protected from torsion load by strong ilio-lumbar ligaments but it is more susceptible to axial compressive forces. Many factors affect the result and outcome of surgery in these levels.Objective: The aim of this study is to correlate operative data, short-term results, complications, and prognostic factors (age, gender, mobility, hospital stay, and level of pain) for one-level lumber discectomybetween different levels (L4–L5 vs. L5–S1).Methods In this prospective study, 32 patie
... Show MoreHuman beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different situations of life passed by him. His choices and actions are voluntary and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
In the framework of correlation method so-called coherent density fluctuation model (CDFM) the nucleon momentum distributions (NMD) of the ground state for some even mass nuclei of fp-shell like 50Cr, 52Cr and 54Cr isotopes are examined. Nucleon momentum distributions are expressed in terms of the fluctuation function (|f(x)|2) which is evaluated by means of the nucleon density distributions (NDD) of the nuclei and determined from theory and experiment. The main characteristic feature of the NMD obtained by CDFM is the existence of high-momentum components, for momenta k ≥ 2 fm−1. For completeness, also elastic electron scattering form factors, F(q) are evaluated within the same framework.
6-Amino-4-(4-hydroxyphenyl)-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano [2,3-c] pyrazole (compound 2) was prepared by condensation of 2-(4-hydroxylbenzylidine) malononitrile (compound 1) [which was prepared by Knoevenagel condensation of malononitrile with 4-hydroxy benzaldehyde ] with 3-methyl-1-phenyl-2-pyrazolin-5-one. Reactions of compound 2 with different reagents formic acid, formamide, and ammonium thiocyanate under microwave irradiation leads to the synthesis of 4-(4-hydroxyphenyl)- 3-methyl-1-phenyl-4,6-dihydro- pyrazolo [3', 4':5,6] pyrano [2,3-d] pyrimidine-5-one (compound 3), 4-(4-hydroxyphenyl)- 3-methyl-1-phenyl-4, 6-dihydro- pyrazolo [3', 4':5,6]pyrano[2,3-d]pyrimidine-5-imine (compound 4) and N-[4-(4-hydroxyphenyl)- 3-me
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More