Background: Obesity typically results from a variety of causes and factors which contribute, genetics included, and style of living choices, and described as excessive body fat accumulation of body fat lead to excessive body, is a chronic disorder that combines pathogenic environmental and genetic factors. So, the current study objective was to investigate the of the FTO gene rs9939609 polymorphism and the obesity risk. Explaining the relationship between fat mass and obesity-associated gene (FTO) rs9939609 polymorphism and obesity in adults. Methods: Identify research exploring the association between the obesity risk and the variation polymorphisms of FTO gene rs9939609. We combined the modified odds ratios (OR) as total groups and subgroups. A stable and random effect processes with standard mean division was used to evaluate the outcomes of this study in dominant and recessive groups. The purpose of the current meta-analysis was to explain the relationship of FTO rs9939609 and obesity. Results: This meta-analysis comprised 8 eligible studies including 4109 participants, comprising of 2441 cases and 1668 control measures. Meta-analysis outcomes exposed that a significant difference (P < 0.05) of the FTO genotypes appeared between the obese and the control groups. The FTO rs9939609 polymorphisms were associated significantly with the increased risk of obesity in five genotypes of adults: the AA + AT vs. TT genotypes, OR = 1.54, 95% CI = 1.34–1.77, p = 0.00001; the AA vs. AT + TT genotypes, OR = 1.40, 95% CI = 1.16–1.69, p = 0.0004; the AA vs. TT genotypes, OR = 1.79, 95% CI = 1.45–2.21, p = 0.00001; the AT vs. TT genotypes, OR = 1.47, 95% CI = 1.26–1.72, p = 0.00001; and the A vs. T alleles, OR = 1.38, 95% CI = 1.26–1.53, p = 0.00001). Conclusion: This meta-analysis reveals that the FTO gene polymorphism rs9939609 is correlated with the increasing obesity risk and A allele is also considered as a risk factor for the obesity susceptibility.
Green areas are an essential component of city planning, as they serve as an outlet for them to spend their free time, in addition to the environmental role that these green areas play in improving the city’s climate by purifying the air and beautifying the city. The study’s problem is summarized in identifying the appropriateness of the current spatial distribution of green areas in the city of Najaf with the current population densities and the pattern in which green areas are distributed using GIS and knowing the per capita share of those green areas in the city, the research assumes that the inconsistency of spaces between regions Green and residential neighbourhoods need to c
The importance of the study lies in highlighting the role of smartwatches as a modern tool for analyzing training load based on functional indicators, such as heart rate and calorie consumption. This allows coaches to monitor individual players’ responses during different training periods, helping to improve physical performance efficiency and reduce the risk of overload-induced fatigue. The study aimed to analyze calorie consumption at different heart rate levels between the special preparation and competition periods for youth football players, with the goal of determining the effect of physiological adaptation on energy efficiency. To achieve this objective, the researcher adopted the descriptive method due to its suitability f
... Show MoreAbstract The wavelet shrink estimator is an attractive technique when estimating the nonparametric regression functions, but it is very sensitive in the case of a correlation in errors. In this research, a polynomial model of low degree was used for the purpose of addressing the boundary problem in the wavelet reduction in addition to using flexible threshold values in the case of Correlation in errors as it deals with those transactions at each level separately, unlike the comprehensive threshold values that deal with all levels simultaneously, as (Visushrink) methods, (False Discovery Rate) method, (Improvement Thresholding) and (Sureshrink method), as the study was conducted on real monthly data represented in the rates of theft crimes f
... Show MoreBackground: Patients with type 2 diabetes have an increased prevalence of lipid abnormalities, contributing to their high risk of cardiovascular diseases (CVD).Glycated hemoglobin (HbA1c) is a routinely used marker for long-term glycemic control. In accordance with its function as an indicator for the mean blood glucose level, HbA1c predicts the risk for the development of diabetic complications in diabetic patients[2].Apart from classical risk factors like dyslipidemia, HbA1c has now been regarded as an independent risk factor for (CVD) in subjects with or without diabetes.Objective The aim of this study was to find out association between glycaemic control (HbA1c as a marker) and serum lipid profile in type 2 diabetic patients.Methods
... Show MoreThis research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreAt the end of 2019, a new form of Coronavirus (later dubbed COVID-19) emerged in China and quickly spread to other regions of the globe. Despite the virus’s unique and unknown characteristics, it is a widely distributed infectious illness. Finding the geographical distribution of the virus transmission is therefore critical for epidemiologists and governments in order to respond to the illness epidemic rapidly and effectively. Understanding the dynamics of COVID-19’s spatial distribution can help to understand the pandemic’s scope and effects, as well as decision-making, planning, and community action aimed at preventing transmission. The main focus of this study is to investigate the geographic patterns of COVID-19 disseminat
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show More