Transportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a novel routing algorithm integrating vehicular ad hoc networks with 5G technology to increase routing efficiency and minimize congestion. This routing is named 5G adaptive traffic management (5G-ATM). It collects real-time data from connected vehicles and roadside units to estimate traffic status and congestion. Out of simulations in an urban environment, the proposed 5G-ATM routing significantly progresses over previous routing protocols, such as an ant colony-inspired energy-efficient for optimized link state (AC-OLSR) routing and directional-cache agent-based location-aided (D-CALAR) routing. During rush hours, 5G-ATM shows the lowest traffic congestion events. Moreover, it minimizes average travel times by almost 8% compared to D-CALAR and 21% compared to AC-OLSR. These outcomes suggest that combining vehicular ad hoc networks with 5G technology helps manage traffic more efficiently, providing an efficient pathway and practical transportation systems.
The technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the comparison. Plot T1 has used a subsurface t
... Show MoreThe current, research, aims, to, verify, the relationship between talent development practices and organizational performance through a mediating role of creative organizational climate at the Institution of Industrial Development and Research- the Iraqi Industry Ministry. The descriptive and analytic approach was adopted as a research design. The research sample was represented by a number of managers and employees who work at the middle management level. The researchers used the questionnaire as the main method for collecting data to achieve the main research objective. It was distributed 162 questionnaires, of which 146 received; and then all of those were used on the final statistical analysis. The sample response-rate rate w
... Show MoreThis study was conducted to determine the ability of water treatment system (Vortisand) to reduce some chemical and physical properties for tigris river raw water, It consisted of turbidity, electrical conductivity, pH, total hardness, calcium Hardness as well as temperature in order to determine the unit`s efficiency for reducing their concentration as compared to those in the water produced by some classical potable water projects (Dora and Wathba) in Baghdad. Samples were collected during the cold months (December 2016 and January 2017) and during the hot months (May and June 2017). The results showed that this system has the ability to reduce some properties such as turbidity, the values were 215NTU in raw water and decreased to NTU
... Show MoreEncouraging micro-enterprises for comprehensive economic development are crucial to achieve the ambitious vision 2030 of the Kingdom of Saudi Arabia.
Small and Medium enterprises are inputting around 15.5 per cent to GDP while 33 per cent contribution as a private sector to Saudi Arabia's gross domestic product (GDP). This study aims to identify the most important factors that affect the efficiency of small enterprises in Saudi Arabia. To accomplish this objective, the study was conducted for small projects via the comprehensive inventory method under the supervision of the Institute of Entrepreneurship. A total of 282 questionnaires were collected from entrepreneurs and the differentiation analysis
... Show MoreThe study searches for the possibility of using duckweed Lemna spp. to reduce the concentration of heavy metals (zinc and iron) in the wastewater of Baghdad by culturing two different densities of the plant with a fresh weights 5 and 10 g/l and without the plant under optimum uncontrolled conditions. The result showed that there was a significant differences at the possibility level of (p? 0.05) for the three treatments, as the highest percentages for zinc removal in the second day for the plant treatment of 5 g/l were 66.40%, while the highest percentage of iron removal were in the tenth days for the plant treatment 10 g/l were 80 %, and noticed that the increase of the heavy metals concentrations accumulated in the plant after bei
... Show MoreThe objective of this research is to develop a method for applying financial derivatives in the local environment to reduce the risk of foreign exchange rate fluctuations to enhance quality of accounting profits through Financial reporting to local units In accordance with international financial reporting standards, To accomplish this objective was selected a sample of Iraqi units exposed to the risk of fluctuations in foreign currency rates, As the research found:
- many companies and banks in the local environment a lot of losses due to fluctuations in foreign currency exchange rates.
- that financial derivatives in the Iraqi environment represent
This study investigates the impacts of climate change (CC) on the emergence and proliferation of fungal pathogens, with a particular focus on global food security and the potential of medicinal plants and their by-products as sustainable mitigation strategies. Through a systematic literature review of articles published up to 2024, we analyze how CC exacerbates the spread and severity of fungal diseases in crops, leading to significant agricultural losses and threats to food availability. The findings highlight that, alongside conventional approaches such as genetic resistance and precision farming, bioactive compounds derived from medicinal plants and their by-products offer promising, eco-friendly alternatives for the management of fungal
... Show MoreKE Sharquie, AA Al-Nuaimy, WJ Kadhum, Saudi medical journal, 2006 - Cited by 3
We found that 4,5- diphenyl- 3(2- propynyl) thio- 1??-triazole [1? forms a complex with Pd (11) ion of ratio 1:1 which absorbs light in CH2CI2 at 400 nm, and 4,5- diphenyl- 3(2- propenyl) thio- 1,2,4- triazole [II] forms complexes with Pd (II) ion of ratio 1:1 which absorbs light at 390 nm, and of ratio 2:1 which absorbs light at 435 nm. On the other hand, we found that the new derivative 4- phenyl- 5( p- amino phenyl) -3- mercapto- 1,2,4- triazole ?111? forms complexes with Cu (II) ion of the ratio 1:1 which absorbs light at 380 nm, with Ni (II) ion of the ratio 3:1 which absorbs light at 358 nm; and with Co (11) ion of the ratio 3.2:1 which absorbs light at 588 nm. The ratio of the complexes were determined by measuring the electronic spe
... Show More