In recent years, various methods have been developed to enhance the characteristics of asphalt pavement in order to face the continuous challenges of increasing traffic loads and changing climate conditions. One of the most popular and successful methods is modifying the asphalt mixtures or asphalt binder with the addition of polymers. Therefore, two types of Polyethylene (PE) polymer, High-Density PE (HDPE) and Low-Density PE (LDPE), are used in this research. Two methods were applied to prepare PE-modified asphalt mixtures: Semi-Wet Method (S-WM) and Dry Method (DM). The findings of the investigation indicated that the addition of PE polymer can reduce the wear loss of aggregate. In general, the experimental results revealed that asphalt mixtures modified with HDPE and LDPE polymers have exceptional performance in comparison with the conventional asphalt mixture. However, HDPE is a better modifier than LDPE in improving the properties of asphalt mixture in terms of Marshall stability, rigidity, Indirect Tensile Strength (ITS), and resistance to moisture damage. In addition, it is recommended to use a 6% addition of HDPE for optimal performance. Finally, S-WM is more effective than DM, attributable to the presence of filler, which prevents the adhesion between the polymer grains and aggregate in DM. Meanwhile, in S-WM, the asphalt binder's adherence to the aggregate particles will enhance since, in this method, the polymer is mixed first with asphalt prior to being added to the aggregate, offering the binder a semi-viscose nature.
Thin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
Asphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show MoreThe filler in the asphalt mixture is essential since it plays a significant role in toughening and stiffening the asphalt. Changes in filler type can lead the asphalt mixtures to perform satisfactorily during their design life or degrade rapidly when traffic and environmental effects are considered. This study aims to assess the impact of filler types such as limestone dust (LS) and hydrated lime (HL) on Marshall characteristics and moisture damage in asphalt mixtures. Three different percentages of HL were employed in this study to partially replace the LS mineral filler: 1.5, 2.0, and 2.5% by aggregate weight. Furthermore, a control mixture was created with 7% LS by overall aggregate weight for the wearing course layer. The Marsha
... Show MoreIn the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentratio
... Show MoreIn this research, a Co-polymer (Styrene / Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside) was synthesized from glucose in four steps using Addition Polymerization according to the radical mechanism using Benzoyl Peroxide (BP) as initiator. Initially, Allyl-2.3.4.6-tetra-O-acetyl-β-D-glucopyranoside monomer was prepared in three steps and the reaction was followed by (HPLC, FT-IR, TLC), in the fourth step the monomer was polymerized with Styrene and the structure was determined by FT-IR and NMR spectroscopy. The reaction conditions (temperature, reaction time, material ratios) were also studied to obtain the highest yield, the relative, specific and reduced viscosity of the prepared polymer was determined, from which the viscosity ave
... Show MoreLet R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreIn this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
Objective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implante
... Show More