Uropathogenic specific protein is a genotoxic protein targeting the DNA, leading to mutations and modifications in the normal cell's DNA and subsequently, cancer development. This study aims to determine the prevalence of the usp gene in Uropathogenic Escherichia coli isolated from females with urinary tract infections and study its correlation with biofilm formation. One hundred and five urine specimens were collected from female patients (20 to 55 years old) with urinary tract infections attending hospitals. Traditional laboratory methods using selective and differential culture media were used for initial bacterial isolation and identification, and molecular techniques that targeted a segment of the 16SrRNA gene with a specific primer pair were used to confirm the bacterial identification and usp gene detection using a conventional polymerase chain reaction. A microtiter plate method was used to assess the ability of isolates to produce biofilm. The bacterial isolation and identification results revealed (54.28%, 57/105) of isolates were Escherichia coli. The results of molecular detection of the usp gene revealed a considerable prevalence (98.2%, 56\57) in Uropathogenic Escherichia coli and a 100% ability to form a biofilm. The isolates exhibited different biofilm formation abilities, with a higher ability to form strong biofilm (42%, 24/57) followed by moderate and weak biofilm formation (35%,20/57) and (23%, 13/57), respectively. However, no statistical correlation between the usp gene and different abilities for biofilm formation has been found. The study’s limitation is that there is a small number of specimens due to the difficulty in specimen collection. In conclusion, the high prevalence of the usp gene in Uropathogenic Escherichia coli, although it does not correlate with biofilm, suggests its essential role in bacterial pathogenicity and the possibility of cancer disease in females with UTIs.
Image databases are increasing exponentially because of rapid developments in social networking and digital technologies. To search these databases, an efficient search technique is required. CBIR is considered one of these techniques. This paper presents a multistage CBIR to address the computational cost issues while reasonably preserving accuracy. In the presented work, the first stage acts as a filter that passes images to the next stage based on SKTP, which is the first time used in the CBIR domain. While in the second stage, LBP and Canny edge detectors are employed for extracting texture and shape features from the query image and images in the newly constructed database. The p
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreAny software application can be divided into four distinct interconnected domains namely, problem domain, usage domain, development domain and system domain. A methodology for assistive technology software development is presented here that seeks to provide a framework for requirements elicitation studies together with their subsequent mapping implementing use-case driven object-oriented analysis for component based software architectures. Early feedback on user interface components effectiveness is adopted through process usability evaluation. A model is suggested that consists of the three environments; problem, conceptual, and representational environments or worlds. This model aims to emphasize on the relationship between the objects
... Show MoreIn this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show More