In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on surface of sand of different packing densities. Nine experimental tests using three footing materials (plastic (P), rubber (R) and aluminium (A)) that differ in relative stiffness with three soil densities were used. This study has separated the effects of relative stiffness of the foundation systems on bearing capacity and settlement by defining the failure mechanism using digital particle image velocimetry (DPIV). The bearing capacity decreases as the foundation system stiffness increases. This decrease, however, is also associated with a smaller ultimate settlement. It is also apparent that a clear trend can be observed in dimensions of the slip surface when comparing rigid and flexible foundation systems. The soil particles in the failure zone under the footing have the highest vertical displacement for the increase in the rigidity of the footing system. A change in the relative stiffness of a foundation system affects the deformation of a granular media and particular analyses have been taken into the load-displacement behaviour, failure mechanisms and velocity fields.
Anatomical changes in internal tissue of stem and leaf when seed and plant treated with acids to enhance growth and development in maize was studied during the spring seasons of 2019 and 2020. Randomized complete block design was used with three replications. Main plots received foliar nutrition treatments, including ascorbic acid (AA), citric acid (CA), and humic acid (HA) at concentrations of 100 mg L−1, alongside HA at 1 ml L−1, with distilled water as the control. Sub-plots underwent corresponding treatments for seed soaking. Results indicated variations in vascular bundle size among treatments, with foliar CA treatment showing superior results in both years, as well as seed soaking in CA and HA. Interaction effects were observed, n
... Show MoreThis research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide has the highes
... Show MoreObjective Tea lovers are increasing worldwide. We hope that this report is the first to discuss the possible impacts of high black tea consumption on gestational weight gain (GWG) and birth parameters. Methods Throughout one year, a total of 7,063 pregnant ladies coming for first antenatal visit were screened in a major tertiary center. Of them, 1,138 were involved and divided according to their preference into 3 groups: excessive tea (ET), usual tea (UT), and mixed beverages group. The study included women who gave birth to healthy neonates. Results The rate of ET consumption was 4.13% with a total of 41 cases. The UT group (controls) comprised 94 women. ET was significantly associated (P<0.05) with maternal age, parity, occupation, smokin
... Show MoreElastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .
This research is focusing on finding more effective polymers that leads to enhance the rheological properties of Water Base Muds. The experiments are done for different types of mud for all substances which are Polyacrylamide, Xanthan gum, CMC (Carboxyl Methyl Cellulose). This study shows the effect of add polymer to red bentonite mud, effect of add polymer to Iraqi bentonite mud, the effect of add bentonite to polymer mud. The mud properties of Iraqi bentonite blank are enhanced after adding the polymers to the blank mix, CMC gives the highest value of plastic viscosity and Gel strength than others; X-anthan gives the highest value of yield point and gel strength than others. For the red bentonite mud, Polyacrylamide ha
... Show MoreThe aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThis study investigates the implementation of Taguchi design in the estimation of minimum corrosion rate of mild-steel in cooling tower that uses saline solution of different concentration. The experiments were set on the basis of Taguchi’s L16 orthogonal array. The runs were carried out under different condition such as inlet concentration of saline solution, temperature, and flowrate. The Signal-to- Noise ratio and ANOVA analysis were used to define the impact of cooling tower working conditions on the corrosion rate. A regression had been modelled and optimized to identify the optimum level for the working parameters that had been founded to be 13%NaCl, 35ᴼC, and 1 l/min. Also a confirmation run to establish the p
... Show More