In the geotechnical engineering applications, precise understandings are yet to be established on the effects of a foundation stiffness on its bearing capacity and settlement. The modern foundation construction uses the new available construction materials that totally change the relative stiffness of the footing structures-soil interactions such as waste material and landfill area of more residential purposes. Conventional bearing capacity equations were dealt with common rigid footing and thus cannot be used for reduced foundation rigidity. Therefore, this study investigates the effects of foundation relative stiffness on its load-displacement behaviour and the soil deformation field using compression test of a strip smooth footings on surface of sand of different packing densities. Nine experimental tests using three footing materials (plastic (P), rubber (R) and aluminium (A)) that differ in relative stiffness with three soil densities were used. This study has separated the effects of relative stiffness of the foundation systems on bearing capacity and settlement by defining the failure mechanism using digital particle image velocimetry (DPIV). The bearing capacity decreases as the foundation system stiffness increases. This decrease, however, is also associated with a smaller ultimate settlement. It is also apparent that a clear trend can be observed in dimensions of the slip surface when comparing rigid and flexible foundation systems. The soil particles in the failure zone under the footing have the highest vertical displacement for the increase in the rigidity of the footing system. A change in the relative stiffness of a foundation system affects the deformation of a granular media and particular analyses have been taken into the load-displacement behaviour, failure mechanisms and velocity fields.
The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreFrequency equations for rectangular plate model with and without the thermoelastic effect for the cases are: all edges are simply supported, all edges are clamped and two opposite edges are clamped others are simply supported. These were obtained through direct method for simply supported ends using Hamilton’s principle with minimizing Ritz method to total energy (strain and kinetic) for the rest of the boundary conditions. The effect of restraining edges on the frequency and mode shape has been considered. Distributions temperatures have been considered as a uniform temperature the effect of developed thermal stresses due to restrictions of ends conditions on vibration characteristics of a plate with different
... Show MoreThe use of worn-out agricultural nozzles in pesticide application has a negative effect on the efficiency and cost of the application process. It also has an effect on environmental pollution due to an excessive amount of pesticide being applied when spraying with worn-out nozzles. In this paper, the resistance to wear of three different internal design hydraulic nozzles was ascertained. Changes in the flow rate and spray distribution as a result of this wear were also investigated. The wear test was done inside a closed system, and it was accelerated using an abrasive material to generate 100 h of wear. The tested nozzles were the Turbo TeeJet (TT)-twin chambered, Turbo Twinjet (TTj60)-dual outlet, and Drift Guard (DG)-pre-orifice.
... Show MoreThis paper introduces an experimental study on the behavior of confined concrete filled aluminum tubular (CFT) column to improve strength design, ductility and durability of concrete composite structures under concentrically loaded in compression to failure. To achieve this: seven column specimens with same concrete diameter 100mm and without steel reinforcement have been examined through experimental testing, which are used to study the effects of the thickness of the aluminum tube encased concrete ( thickness : 0mm, 2mm, 3mm, 4mm and 5mm with same length of column 450mm), length of column (thickness 5mm and length of column 700mm) and durability (thickness 5mm and length of column 450mm) on the structural behavior of &
... Show MoreThe present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam
... Show MoreIn recent decades, tremendous success has been achieved in the advancement of chemical admixtures for Portland cement concrete. Most efforts have concentrated on improving the properties of concrete and studying the factors that influence on these properties. Since the compressive strength is considered a valuable property and is invariably a vital element of the structural design, especially high early strength development which can be provide more benefits in concrete production, such as reducing construction time and labor and saving the formwork and energy. As a matter of fact, it is influenced as a most properties of concrete by several factors including water-cement ratio, cement type and curing methods employed.
Because of acce
A new, easy‐to‐manufacture, and low‐cost integrated cubical solar collector tank for domestic usage is concerned in this work. Three models are prepared, side by side, and tested to point out their seasonal performance. Tank Model I has three vertical sides, black painted and glazed to act as an absorber; the other sides are insulated. Tank Model II has two black painted and glazed sides, with four insulated surfaces. The models are south‐oriented at different positions and tested versus the conventional tank (Model III) to validate and assess their performance in summer and winter. In summer, the temperatures in Models I and II are lower than those for Model III since they have insulated sid
In order to improve the students’ performance level in some of the skills that are implemented on the mat device of ground movements, including the front and rear rolling, it is necessary to study the most important indicators that have a clear impact on the performance of those rolls. Among the objectives of the research: To identify the percentage of the contribution of flexibility of the hip joint, the angle of the knees and the muscular strength of the arms in the performance of the front and rear rolling skills, an opening of the research sample. The researchers used the descriptive method in the survey method for its suitability to the nature of the work, and the research community was represented by students of the third st
... Show More