The reason for conducting this study is to prolong release of miconazole in the ocular site of action by ocular-based gels (OBGs) formulations. The formulation factors affecting on the release from OBG should be studied using various gelling agents in various concentrations to achieve the improvement in retention and residence time in response to prolonged release. In this study, the formulations were prepared using carbopol 940, pectin, sodium alginate, poloxamer 407, and poly(methacrylic acid) at 0.5%, 1%, and 1.5% w/v, respectively. Hydroxypropyl methylcellulose E5 (HPMC E5) 1% was added as thickening agent/viscosity builder. The formulation containing carbopol 940, pectin and sodium alginate at 1.5% w/v, displayed a noticable improvement in viscosity, gelling capacity, and extended release for 7 h in comparison with the reference drug. Overall, the release showed that the sodium alginate with HPMC E5 form
The availability of low- cost adsorbent namely Al-Khriet ( a substance found in the legs of Typha Domingensis) as an agricultural waste material, for the removal of lead and cadmium from aqueous solution was investigated. In the batch tests experimental parameters were studied, including adsorbent dosage between (0.2-1) g, initial metal ions concentration between (50-200) ppm (single and binary) and contact time (1/2-6) h. The removal percentage of each ion onto Al-Khriet reached equilibrium in about 4 hours. The highest adsorption capacity was for lead (96%) while for cadmium it was (90%) with 50 ppm ions concentration, 1 g dosage of adsorbent and pH 5.5. Adsorption capacity in the binary mixture were reduce at about 8% for lead a
... Show MorePortable and stationary electrical generators became quite popular in Iraq soon after the shortage in national electrical
energy after 2003. Multi step risk assessment process is used in this study in the assessment of risks caused by
contamination of indoor air by lead particles emitted from domestic electrical generators. Two portable electrical
generators are tested under controlled indoor conditions (Radial LG (0.9 keV) fueled with benzene and oil and TigMax
(3 keV), fueled with benzene only). Lead particles in air were sampled by using portable dust sampler (Sniffer, L-30).
The atmospheric particulate sampling process is carried out in a flat located in the first floor of a three stories building
located in Baghdad
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show MoreThe research aims to evaluate the selected projects from the water Department of Baghdad, according to a standard for total quality management and to achieve this goal , adopted the case study method to get to know how close or turn away those projects in the management of Standard Malcolm Baldrige Award for Excellence in Quality Management its comprehensive one scales the world's most famous in this area , in order to draw a general framework to evaluate how project management can benefit from this approach to modern management , input from the entrances of the comprehensive management reform and development.
Be standard Malcolm Baldrige Award of several elements: - leadership , strategic planning , foc
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreDynamic Thermal Management (DTM) emerged as a solution to address the reliability challenges with thermal hotspots and unbalanced temperatures. DTM efficiency is highly affected by the accuracy of the temperature information presented to the DTM manager. This work aims to investigate the effect of inaccuracy caused by the deep sub-micron (DSM) noise during the transmission of temperature information to the manager on DTM efficiency. A simulation framework has been developed and results show up to 38% DTM performance degradation and 18% unattended cycles in emergency temperature under DSM noise. The finding highlights the importance of further research in providing reliable on-chip data transmission in DTM application.
We studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show More