The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
ABSTRUCT
This research aims at examining the expected gap between the fact of planning and controlling process of production at the State Company for Electric Industries and implementation of material requirements planning system in fuzzy environment. Developing solutions to bridge the gap is required to provide specific mechanisms subject to the logic of fuzzy rules that will keep pace with demand for increased accuracy and reduced waiting times depending on demand forecast, investment in inventory to reduce costs to a minimum.
The proposed solutions for overcoming the research problem has required some questions reflecting the problem with its multiple dimensions, which ar
... Show MoreBackground: Diabetic mellitus (DM) is a collection of metabolic disorder identified by hyperglycemia. The heterogeneous etiology includes defects either in insulin secretion, or in insulin action, or the both. In addition to the distraction in carbohydrate, fat and protein metabolism. Inflammatory reaction that caused by many pro-inflammatory cytokines play a central role in the pathogenicity of T2DM, these cytokines can enhance insulin resistance which led to impaired glucose homeostasis. Subjects: The study included 75 patients (38 males and 37 females) suffering from T2DM with age mean ± SE 52.30 ± 1.60, and 70 individuals as healthy controls (35 males and 35 females) with age mean ± SE 48.88 ± 0.64. Evaluation of immunological marke
... Show MoreBreast cancer has got much attention in the recent years as it is a one of the complex diseases that can threaten people lives. It can be determined from the levels of secreted proteins in the blood. In this project, we developed a method of finding a threshold to classify the probability of being affected by it in a population based on the levels of the related proteins in relatively small case-control samples. We applied our method to simulated and real data. The results showed that the method we used was accurate in estimating the probability of being diseased in both simulation and real data. Moreover, we were able to calculate the sensitivity and specificity under the null hypothesis of our research question of being diseased o
... Show MoreBackground: Oral squamous cell carcinoma is the most prevalent malignant neoplasm of the oral cavity which results from accumulated genetic and epigenetic alterations. It is not always inexorable and may be reversible if early intervention in the process can occur to prevent further genetic mutation and disease progression. The FHIT gene is a tumor suppressor gene located in FRA3B region which is the most active common fragile site, where DNA damage leading to aberrant transcripts and translocations frequently occur. The WWOX is a tumor suppressor gene that plays a central role in tumor suppression through transcriptional repression and apoptosis, with its apoptotic function the more prominent of the two. This study aimed to evaluate and co
... Show MoreBackground: Previous studies about the correlation of genetic polymorphisms in the multigene family of cyto- chrome P450 (CYPs), the effect of tobacco smoking, and the risk of developing cancer have been well in- vestigated in different populations, but not in Iraq. Furthermore, the studies of malignance occurrence re- lationship with cigarette tobacco smoking revealed the presence of strong association, however, little is known about the risk of Waterpipe (WP) tobacco smoking. Thus, determination two important genetic polymorphisms in CYP1A1, a main member of CYPs, among Iraqi men was our first aim. This is the first study that highlights the correlation of CYP1A1 polymorphisms with the risk of lung cancer in Iraq. The second aim was to ev
... Show MoreIn this paper, we introduce the concept of fuzzy n-fold KUideal in KU-algebras, which is a generalization of fuzzy KU-ideal of KUalgebras and we obtain a few properties that is similar to the properties of fuzzy KU-ideal in KU-algebras, see [8]. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreIn this paper, new method have been investigated using evolving algorithms (EA's) to cryptanalysis one of the nonlinear stream cipher cryptosystems which depends on the Linear Feedback Shift Register (LFSR) unit by using cipher text-only attack. Genetic Algorithm (GA) and Ant Colony Optimization (ACO) which are used for attacking one of the nonlinear cryptosystems called "shrinking generator" using different lengths of cipher text and different lengths of combined LFSRs. GA and ACO proved their good performance in finding the initial values of the combined LFSRs. This work can be considered as a warning for a stream cipher designer to avoid the weak points, which may be f
... Show MoreDue to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study
... Show More