The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
Today’s world confronts various threats from different sources. Similar to deprivation of energy, economic facilities, or political deposition, educational poisoning is one of the dangerous phenomena that result from distorting and corrupting the ethical and educational components of teaching by various material and non – material means.This paper sheds light on the concept of the educational system which is not a mere process of teaching, but rather an endless process of socialization that begins in the family and develops into religious, ethical, scientific and mythological systems, all of which form the cognitive component. It also defines the necessary means by which it is transmitted from one generation into another. The educati
... Show MoreThis study was aimed to determine the mutations and single nucleotide polymorphisms (SNPs) in exon 3 and 7 of estrogen receptor beta (ESR2) gene in women with breast cancer from Iraq. Different samples (blood, fresh tissue with blood from same patient, and formalin fixed paraffin embedded, FFPE) were collected from women with breast cancer. Molecular analysis exon 3 and 7 in ESR2 has been studied by using PCR. It was found exon 3 and 7 in ESR2 were revealed as a single band with size 151 and 157 bp, respectively. There was no SNP in exon 3 has been identified. While three novel polymorphisms (ACT, AGG and GCA) were detected in exon 7, the type of those polymorphisms deletion for ACT and AGG while substitution polymorphism for GCA. From this
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThe process of evaluating business processes, complex, repetition of procurement processes, need for raw materials and frequency of demand, which makes dealing with suppliers in the evaluation process, making the need for a process intervention in the process. Lighter on the other hand.
Many Iraqi companies suffer from problems related to suppliers, and cases of administrative and financial corruption are often raised regarding this type of contract and from this reality the necessity of researching this problem and trying to develop some solutions to reduce its impact on the companies' work, by using a method that works according to the standards adopted in Evaluation and selection of the supplier in the
... Show MoreThe process of controlling a Flexible Joint Robot Manipulator (FJRM) requires additional sensors for measuring the state variables of flexible joints. Therefore, taking the elasticity into account adds a lot of complexity as all the additional sensors must be taken into account during the control process. This paper proposes a nonlinear observer that controls FJRM, without requiring equipment sensors for measuring the states. The nonlinear state equations are derived in detail for the FJRM where nonlinearity, of order three, is considered. The Takagi–Sugeno Fuzzy Model (T-SFM) technique is applied to linearize the FJRM system. The Luenberger observer is designed to estimate the unmeasured states using error correction. The develop
... Show MoreThe activation and reaction energies of the C-C and C-H bonds cleavage in pyrene molecule are calculated applying the Density Functional Theory and 6-311G Gaussian basis. Different values for the energies result for the different bonds, depending on the location of the bond and the structure of the corresponding transition states. The C-C bond cleavage reactions include H atom migration, in many cases, leading to the formation of CH2 groups and H-C≡C- acetylenic fragments. The activation energy values of the C-C reactions are greater than 190.00 kcal/mol for all bonds, those for the C-H bonds are greater than 160.00 kcal/mol. The reaction energy values for the C-C bonds range between 56.497 to 191.503 kcal/mol. As for the C-H cleavage rea
... Show MoreBackground: EBV infection in tissue micro-environment is challenged by the precisely regulated survivaland apoptosis mechanisms. Abnormal bcl-2 proto-oncogene expression in colonic carcinomas allowsaccumulation and propagation of these genetically altered cells.Objective: To analyze the relevant concordance of BCL-2 gene , EBNA1 s and LMP-1-EBV expression inissues from a group of Iraqi patients with colonic adenocarcinomas.Patients and Methods: One hundred (100) tissue biopsies, belonged to (40) patients with colorectalcancers, (40) patients with benign colon tumors, and (20) apparently normal colorectal control tissues,were enrolled in this study. The detection of EBNA1 s and LMP-1-EBV as well as BCL-2 was done byimmunohistochemist
... Show More<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami
... Show More