The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
Many objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreThe aim of this work is study the partical distribution function g(r12,r1) for Carbon ion cases (C+2,C+3,C+4) in the position space using Hartree-Fock's Wave function, and the partitioning technique for each shell which is represented by Carbon Ions [C+2 (1s22s2)], [C+3 (1s22s)] and [C+4 (1s2)]. A comparision has been made among the three Carbon ions for each shell. A computer programs (MATHCAD ver. 2001i) has been used texcute the results.
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.
The research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl
Background: C-reactive protein (CRP) is an acute phase protein that its plasma levels increase after trauma or surgery so it is used as an indicator for the level of inflammation after surgery. The objective of this study is to investigate pre- and post-operative levels of CRP in three types of oral surgical interventions (Apicoectomy, Impaction, and Impacted teeth exposure). Materials and Methods: A total number of (48) healthy individuals aged (20-60) years who needed oral surgical intervention for either (removal of impacted third molars, exposure of an impacted canine, or Apicoectomy). A 4ml venous blood was obtained from each patient at two occasions (pre-operatively at the day of operation and post-operatively after 48 hours), then ce
... Show MoreA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a signifcantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p]=0.009; corrected p [pc]=0.027) and was associated with a lower risk of HBV infection (odds ratio [OR]=0.49; 95% confdence interval [CI]=0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR=0.25; 95% CI=0.08–0.81; p=0.02) and GG (10.0 vs. 16.7; OR=0.25; 95% CI=0.07–0.91; p=0.036), but the pc value was not signifcant (0.12 and 0.126, respec‑ tively). Serum IL35 levels showed signifcant difere
... Show More