The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
Breast cancer is the second most common cancer in women world. Multiple Cytokines appear to have a dominant role in human breast cancer formation. Estimation of the in situ expression of IL-6 and IL-1β in breast cancer patients. A sixty patients with breast cancer BC were divided into two clinical subgroups, (30) with malignant breast cancer MBC and (30) with benign breast tumor as a control group according to histological examination. In situ hybridization technique used for detection of IL-6 and IL-1β mRNA sequence in two groups. The results showed that percentages of mRNA expression of IL-6 and IL-1β were in (≥ 11-50%) for malignant breast cancer. This research also investigated that (73.3%) of beni
... Show MoreBackground: ;Hepatitis C virus (HCV) is a major cause of chronic liver disease. Approximately 85% of patients acutely infected with HCV progress to chronic liver disease with persistence of HCV-RNA for more than 6 months Among patients with chronic HCV infection , 15-20% progress to end-stage liver disease main transmission methods of the virus is by : blood and blood products ; sharing needles and acupuncture .Objective: To evaluate Iraqi patients infected with chronic HCV, including their treatment, and factors that affect their response to treatment .Methods :This study was performed at Gastroenterology and Hepatology hospital in Baghdad from January 2011 to March 2012.The study enrolled 90 patients with HCV Antibody positive (Ab +ve)
... Show MoreTwitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based dat
... Show MoreTNF-α-induced osteoclastogenesis is central to post-menopausal and inflammatory bone loss, however, the effect of phytoestrogens on TNF-α-induced bone resorption has not been studied. The phytoestrogens genistein, daidzein, and coumestrol directly suppressed TNF-α-induced osteoclastogenesis and bone resorption. TRAP positive osteoclast formation and resorption area were significantly reduced by genistein (10(-7) M), daidzein (10(-5) M), and coumestrol (10(-7) M), which was prevented by the estrogen antagonist ICI 182,780. TRAP expression in mature TNF-α-induced osteoclasts was also significantly reduced by these phytoestrogen concentrations. In addition, in the presence of ICI 182,780 genistein and coumestrol (10(-5) -10(-6) M) augmente
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show More