The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreIn this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of
... Show MoreWith the increasing integration of computers and smartphones into our daily lives, in addition to the numerous benefits it offers over traditional paper-based methods of conducting affairs, it has become necessary to incorporate one of the most essential facilities into this integration; namely: colleges. The traditional approach for conducting affairs in colleges is mostly paper-based, which only increases time and workload and is relatively decentralized. This project provides educational and management services for the university environment, targeting the staff, the student body, and the lecturers, on two of the most used platforms: smartphones and reliable web applications by clo
The control of prostheses and their complexities is one of the greatest challenges limiting wide amputees’ use of upper limb prostheses. The main challenges include the difficulty of extracting signals for controlling the prostheses, limited number of degrees of freedom (DoF), and cost-prohibitive for complex controlling systems. In this study, a real-time hybrid control system, based on electromyography (EMG) and voice commands (VC) is designed to render the prosthesis more dexterous with the ability to accomplish amputee’s daily activities proficiently. The voice and EMG systems were combined in three proposed hybrid strategies, each strategy had different number of movements depending on the combination protocol between voic
... Show MoreA novel method for Network Intrusion Detection System (NIDS) has been proposed, based on the concept of how DNA sequence detects disease as both domains have similar conceptual method of detection. Three important steps have been proposed to apply DNA sequence for NIDS: convert the network traffic data into a form of DNA sequence using Cryptography encoding method; discover patterns of Short Tandem Repeats (STR) sequence for each network traffic attack using Teiresias algorithm; and conduct classification process depends upon STR sequence based on Horspool algorithm. 10% KDD Cup 1999 data set is used for training phase. Correct KDD Cup 1999 data set is used for testing phase to evaluate the proposed method. The current experiment results sh
... Show MoreDandruff and seborrheic dermatitis (SD) are common skin disorders affecting the scalp and extending to other body sites in the case of SD. They are associated with pruritus and scaling, causing an esthetical disturbance in the population affected. Treatment of such conditions involves using a variety of drugs for long terms, thus optimizing drug formulation is essential to improve therapeutic efficacy and patient compliance. Conventional topical formulations like shampoos and creams have been widely used but their use is associated with disadvantages. To overcome such effects, novel topical nanotechnology-based formulations are currently under investigation. In the following article, we highlight recently published formulatio
... Show More