The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for differ
... Show MoreCloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize
... Show Moreأثبتت الشبكات المحددة بالبرمجيات (SDN) تفوقها في معالجة مشاكل الشبكة العادية مثل قابلية التوسع وخفة الحركة والأمن. تأتي هذه الميزة من SDN بسبب فصل مستوى التحكم عن مستوى البيانات. على الرغم من وجود العديد من الأوراق والدراسات التي تركز على إدارة SDN، والرصد، والتحكم، وتحسين QoS، إلا أن القليل منها يركز على تقديم ما يستخدمونه لتوليد حركة المرور وقياس أداء الشبكة. كما أن المؤلفات تفتقر إلى مقارنات بين الأدوات والأ
... Show MoreIn this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.
A skip list data structure is really just a simulation of a binary search tree. Skip lists algorithm are simpler, faster and use less space. this data structure conceptually uses parallel sorted linked lists. Searching in a skip list is more difficult than searching in a regular sorted linked list. Because a skip list is a two dimensional data structure, it is implemented using a two dimensional network of nodes with four pointers. the implementation of the search, insert and delete operation taking a time of upto . The skip list could be modified to implement the order statistic operations of RANKand SEARCH BY RANK while maintaining the same expected time. Keywords:skip list , parallel linked list , randomized algorithm , rank.
The distribution of the intensity of the comet Ison C/2013 is studied by taking its histogram. This distribution reveals four distinct regions that related to the background, tail, coma and nucleus. One dimensional temperature distribution fitting is achieved by using two mathematical equations that related to the coordinate of the center of the comet. The quiver plot of the gradient of the comet shows very clearly that arrows headed towards the maximum intensity of the comet.
The aesthetic contents of data visualization is one of the contemporary areas through which data scientists and designers have been able to link data to humans, and even after reaching successful attempts to model data visualization, it wasn't clear how that reveals how it contributed to choosing the aesthetic content as an input to humanize these models, so the goal of the current research is to use The analytical descriptive approach aims to identify the aesthetic contents in data visualization, which the researchers interpreted through pragmatic philosophy and Kantian philosophy, and analyze a sample of data visualization models to reveal the aesthetic entrances in them to explain how to humanize them. The two researchers reached seve
... Show MoreFinding orthogonal matrices in different sizes is very complex and important because it can be used in different applications like image processing and communications (eg CDMA and OFDM). In this paper we introduce a new method to find orthogonal matrices by using tensor products between two or more orthogonal matrices of real and imaginary numbers with applying it in images and communication signals processing. The output matrices will be orthogonal matrices too and the processing by our new method is very easy compared to other classical methods those use basic proofs. The results are normal and acceptable in communication signals and images but it needs more research works.
Today, the science of artificial intelligence has become one of the most important sciences in creating intelligent computer programs that simulate the human mind. The goal of artificial intelligence in the medical field is to assist doctors and health care workers in diagnosing diseases and clinical treatment, reducing the rate of medical error, and saving lives of citizens. The main and widely used technologies are expert systems, machine learning and big data. In the article, a brief overview of the three mentioned techniques will be provided to make it easier for readers to understand these techniques and their importance.