The influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, which is used to cluster genes. FCM allows an object to belong to two or more clusters with a membership grade between zero and one and the sum of belonging to all clusters of each gene is equal to one. This paradigm is useful when dealing with microarray data. The total time required to implement the first model is 22.2589 s. The second model combines FCM and particle swarm optimization (PSO) to obtain better results. The hybrid algorithm, i.e., FCM–PSO, uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–PSO method is effective. The total time of implementation of this model is 89.6087 s. The third model combines FCM with a genetic algorithm (GA) to obtain better results. This hybrid algorithm also uses the DB index as objective function. The experimental results show that the proposed hybrid FCM–GA method is effective. Its total time of implementation is 50.8021 s. In addition, this study uses cluster validity indexes to determine the best partitioning for the underlying data. Internal validity indexes include the Jaccard, Davies Bouldin, Dunn, Xie–Beni, and silhouette. Meanwhile, external validity indexes include Minkowski, adjusted Rand, and percentage of correctly categorized pairings. Experiments conducted on brain tumor gene expression data demonstrate that the techniques used in this study outperform traditional models in terms of stability and biological significance.
One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreThe expanding use of multi-processor supercomputers has made a significant impact on the speed and size of many problems. The adaptation of standard Message Passing Interface protocol (MPI) has enabled programmers to write portable and efficient codes across a wide variety of parallel architectures. Sorting is one of the most common operations performed by a computer. Because sorted data are easier to manipulate than randomly ordered data, many algorithms require sorted data. Sorting is of additional importance to parallel computing because of its close relation to the task of routing data among processes, which is an essential part of many parallel algorithms. In this paper, sequential sorting algorithms, the parallel implementation of man
... Show MoreBackground: Excision repair cross-complementing group 2 gene (ERCC2) polymorphisms have been linked as being a risk factor for colorectal cancer (CRC) emergence. However, data from several studies are contradictory. To validate genetic biomarkers of the CRC; the impact of the following ERCC2 polymorphism (rs1799793 and rs238406) was examined on CRC susceptibility among sample of Iraqi population. Methods: A total of 126 subjects were enrolled in this case control study; 78 CRC patients and 48 apparently healthy individuals who are age, gender, smoking status and BMI matched. Polymerase chain reaction (PCR) was used for genotyping, followed by sequencing then the association between genetic polymorphisms and CRC risk was investigate
... Show MoreThe purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
The cross section evaluation for (α,n) reaction was calculated according to the available International Atomic Energy Agency (IAEA) and other experimental published data . These cross section are the most recent data , while the well known international libraries like ENDF , JENDL , JEFF , etc. We considered an energy range from threshold to 25 M eV in interval (1 MeV). The average weighted cross sections for all available experimental and theoretical(JENDL) data and for all the considered isotopes was calculated . The cross section of the element is then calculated according to the cross sections of the isotopes of that element taking into account their abundance . A mathematical representative equation for each of the element
... Show MoreBackground: Polymorphisms in the TNF-α gene affect the development and progression of rheumatoid arthritis. Objective: To investigate the associations between (-806 T/C) and (-857 T/C) SNPs with rheumatoid arthritis severity and susceptibility in a sample of Iraqi patients. Methods: A case-control study was conducted in Baghdad, Iraq. Twenty healthy controls and 63 patients confirmed to be newly diagnosed with rheumatoid arthritis were included. Those are divided into two groups (patients and controls), and the patients were further subdivided into severe and mild-moderate groups. Samples from those participants were analyzed for clinical and inflammatory parameter measurements. Genotyping by the Sanger method was performed to stu
... Show MoreOver the past decades, several studies have examined the subcellular localization of the cauliflower mosaic virus (CaMV) P6 protein by tagging it with GFP (P6-GFP). These investigations have been essential in the development of models for inclusion body formation, nuclear transport, and microfilament-associated intracellular movement of P6 inclusion bodies for delivery of virions to plasmodesmata. Although it was shown early on that the translational transactivation function of P6-GFP was comparable to wild type P6, it has not been possible to incorporate a P6-GFP gene into an infectious clone of CaMV. Consequently, it has not been possible to formally prove that a P6-GFP fusion is comparable in function to the unmodified P6 protein. Here w
... Show MoreIt was aimed to understand the interleukin-4 (IL-4) role in etio-pathogenesis of rheumatoid arthritis (RA). Two approaches were adopted. In the first one, a quantitative expression of IL4 gene was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and such findings were correlated with some demographic, clinical and laboratory parameters, which included gender, duration of disease, disease activity score (DAS-28), rheumatoid factors (RFs), C-reactive protein (CRP) and anti-cyclic citrullinated peptide (ACCP) antibodies. In the second approach, a single nucleotide polymorphism (SNP) of IL4 gene (rs2243250) was inspected by DNA sequencing using specific primers. Fifty-one Iraqi RA patients (22 males and 29 fem
... Show More