The nanocrystalline porous silicon (PS) films are prepared by electrochemical etching ECE of p -type silicon wafer with current density (10mA/cm ) and etching times on the formation nano -sized pore array with a dimension of around different etching time (10 and 20) min. The films were characterized by the measurement of XRD, atomic force microscopy properties (AFM). We have estimated crystallites size from X -Ray diffraction about nanoscale for PS and AFM confirms the nanometric size Chemical fictionalization during the electrochemical etching show on the surface chemical composition of PS. The atomic force microscopy investigation shows the rough silicon surface, with increasing etching process (current density and etching time) porous structure nucleates which leads to an increase in the depth and width (diameter) of surface pits.
Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreIn this study, a Hydroxyapatite (HA) coating was prepared on a titanium implant by an electrochemical deposition process. The titanium pre-treatment by anodizing in 1.65 mol/L sulfuric acid with (10V) at room temperature. The deposition was all conducted at a constant voltage of 6.0 V, for 1 h at room temperature. The coatings thus prepared were characterized with Fourier transform infrared spectroscopy (FTIR) and thickness of the coated layer.The electrochemical deposition of HA occurred on the titanium as a cathode. Coated titanium by HA after anodizing revealed a good corrosion protection efficiency even at a temperature ranged (293-323) K in artificial saliva. Activation energy and pre-exponential factor (kinetic parameters) were calcul
... Show MoreIn this study, a system of nonthermal plasma that was operated under atmospheric pressure and was powered by argon gas was employed. The particular plasma properties are affected by changes in the Ar gas flow ranges from 0.5 to 2.5 l/min, product by stream of the plasma jet that is utilized. By using the aforementioned method generated from AC and DC. After placing Ar gas as the cathode, which represents the negative pole, flows toward the anode, which is represented by a tiny metal plate of Zn measuring 6 × 1 cm2 in size, with a submerged part of 4 cm2 long, with both types of current employed having a high voltage of 13.5 kV and the frequency of AC was 30 kHz, we measured these variable parameters. It has been shown that when argon f
... Show MoreThis study was designed to evaluate the ability of bioemulsifier to inhibit the growth of some pathogenic microorganisms. Fourteen isolates belonged to Serratia sp. were collected and tested for their ability to produce bioemulsifier. Results showed that Serratia marcescens S10 (isolated from the gut of the American cockroach) had the highest ability to produce bioemulsifier, among 14 isolates belong to Serratia spp. and it had the ability to inhibit the growth of some microorganisms. The production of bioemulsifier was detected by determination of emulsification index (E24%), qualitative drop-collapse test, emulsification activity (E.A) and measuring the surface tension (S.T). The results of bioemulsifier produced by Serratia marcescens S1
... Show MoreThe bacterial isolates were obtained from Al-Kindi Hospital were diagnosed by the Vitek-2 system and re confirm by 16srRNA gene as S. aurous, the results were shown 20 isolates (66.7%) out of 30 isolates were positive to protease production. All bacterial isolates (100%) were sensitive to Gentamicin and Levofloxacin. but resistant (100%) to aztreonam. The best temperature for enzyme production from bacteria was 37 °C, and the best pH for enzyme production was 7. Partial purification of the bacterial enzyme (protease) was carried out using short steps included ammonium sulfate 65% saturation, ion exchange using DEAE- cellulose column and then applied on gel filtration chromatography using Sephadex G-200 column. The enzymatic activit
... Show MoreABSTRACT
The effect of adding raw bacteriocin produced by Lactobacillus bulgaricus to cheese curd at an amount of (5 and 10 and 15) mL/kg cheese as a biological preservative to prolong the shelf life of soft cheese, in addition to the control treatment, knowing that each 1 mL of bacteriocin filter contains 15 units/ mL of bacteriocin. The results of the physicochemical, microbial and sensory tests for cheese stored at refrigerator temperature for a period (zero) to (21) d of adding bacteriocin showed the superiority of the treatment of cheese added to 15 mL/kg cheese of bacteriocin over the rest of the other treatments during the storage period, wh
... Show Moreسمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
Abstract
The present paper focuses in a particular on the study of the biochar production conditions by the thermal pyrolysis of biomass from local Iraqi palm fronds, in the absence of oxygen. The biochar product can be used as soil improvers. The effect of temperature on the extent of the thermal pyrolysis process was studied in the range from 523 to 773K with a residence time of 15 minutes and nitrogen gas flow rate of 0.1 l/min. The produced biochar was characterized as will as biomass and degradation products. The results showed that the rate of biochar production decreases with the increasing in temperature, also it was noted that the normalized biochar surface area and pore size increases with the increasin
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show More