Preferred Language
Articles
/
QRYnGocBVTCNdQwCJzf3
NUMERICAL ANALYSIS OF PILES FOUNDATION TO REDUCE THE ZONE OF LIQUEFACTION OF SANDY SOIL UNDER DYNAMIC LOADS
...Show More Authors

The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the time and intensity of dynamic loads applied. On the other hand, the excess pore pressure increases with increasing the dynamic loads as well as it can be noticed that under the influence of each load the excess pore pressure increases with depth. At low dynamic load level, the liquefaction was not occurred (ru<1) while with high dynamic load, high produced vertical settlement causes that the liquefaction to be occurs (ru> 1). The zone of liquefaction below the foundation cap under dynamic load produce high vertical settlement and more than the permissible settlement without piles is about (0.7 B). The effect of an increase in the number of piles leads to decrease in the vertical settlement and the excess pore pressure decreases, the decrease becomes apparent when the number of piles increases to (8 piles) or more, as well the relationship is approximately linear between the excess pore pressure and effective stress The zone of liquefaction begins to decrease as the number of piles increases, when the number of piles are equal or more than (8 piles), the liquidation of soil has not occurs and the value of pore pressure ratio is becomes (ru<1). The pile foundation which produces vertical settlement more than the allowable settlement leads to mobilize the phenomenon of liquefaction to occur. A relationship to estimate the number of piles below the cap to prevent the liquefaction was obtained.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Behavior of passive single pipe pile in sandy soil
...Show More Authors
Abstract<p>This research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m<sup>3</sup>. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the </p> ... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Jan 29 2024
Journal Name
Proceedings Of The International Conference On Research Advances In Engineering And Technology - Itechcet 2022
Liquefaction potential effect in Makhool Earth dam under seismic impact
...Show More Authors

This study is directed at investigating the liquefaction potential within earth dams using numerical modelling by two-dimensional finite element analyses method for considering the Makhool earth dam on the Tigris River in Iraq. The effect of peak ground acceleration of 0.02g, 0.04g, 0.06g, and 0.08g is viewed for a shell, and the crest is presented for all scaled earthquake duration 25 s, 50 s, 75 s, and 100 s. The current study program comprises selecting a representative history point within the Makhool earth dam as a case study. Many points were allocated at different locations within the shell and crest to observe the fluctuation in the factor of safety against liquefaction. The seepage analysis results viewed graphically for the operat

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Replacement of Line Loads acting on slabs to equivalent uniformly Distributed Loads
...Show More Authors

This study aims to derive a general relation between line loads that acting on two-way slab system and the equivalent uniformly distributed loads. This relation will be so useful to structural designer that are used to working with a uniformly distributed load and enable them to use the traditional methods for analysis of two-way systems (e.g. Direct Design Method). Two types of slab systems, Slab System with Beams and Flat Slab Systems, have been considered in this study to include the effect of aspect ratio and type of slab on the proposed relation. Five aspect ratios, l2/l1 of 0.5, 0.75, 1.0, 1.5 and 2.0, have been considered for both types of two-way systems.
All necessary finite element analyses have been executed with SAFE Soft

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering &amp; Technology
Improvement of Gypsum Soil by Using Polyurethane to Reduce Erosion and Solubility of Irrigation Canals
...Show More Authors

The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an

... Show More
View Publication
Crossref
Publication Date
Tue Dec 22 2020
Journal Name
Modern Applications Of Geotechnical Engineering And Construction Geotechnical Engineering And Construction
Numerical Modeling of Honeycombed Geocell Reinforced Soil
...Show More Authors

Shallow foundations have been commonly used to transfer load to soil layer within the permissible limits of settlement based on the bearing capacity of the soil. For most practical cases, the shape of the shallow foundation is of slight significance. Also, friction resistance forces in the first layers of soils are negligible due to non-sufficient surrounding surface area and compaction conditions. However, the bearing capacity of a shallow foundation can be increased by several techniques. Geocell is one of the geosynthetic tool applied mainly to reinforce soil. This study presents a numerical approach of honeycombed geocell steel panels reinforcing the sandy soil under shallow foundation, and several parameters are investigated such as th

... Show More
Preview PDF
Crossref (13)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Open Engineering
Field tests of grouted ground anchors in the sandy soil of Najaf, Iraq
...Show More Authors
Abstract<p>This article presents test results documentation for four grouted ground anchors embedded in sandy soil. Three anchors were trial, while one was a working anchor. One trial anchor is instrumented with eight resistance-type strain gauges glued on the corrugated pipe and embedded within the grouted body. An acceptance test was made for all anchors to determine the working load. Acceptance criteria suggested by the Post-Tensioning Institute were applied, and the working anchor did not pass the creep criterion, so it was taken out of service. The strain measurements indicated that the compression stresses were generated along the free length, while the tension stresses were generated alon</p> ... Show More
Scopus Clarivate Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
The Behavior of Gypseous Soil under Vertical Vibration Loading
...Show More Authors

The dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Sep 02 2014
Journal Name
Arab J Sci Eng
Modeling of Trichloroethylene Migration in Three-Dimensional Saturated Sandy Soil
...Show More Authors

Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Oct 25 2017
Journal Name
European Journal Of Environmental And Civil Engineering
Effect of saturation on response of a single pile embedded in saturated sandy soil to vertical vibration
...Show More Authors

View Publication
Scopus (19)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Engineering
Parametric Study on Unconnected Piled Raft Foundation Using Numerical Modelling
...Show More Authors

Piled raft is commonly used as foundation for high rise buildings. The design concept of piled raft foundation is to minimize the number of piles, and to utilize the entire bearing capacity. High axial stresses are therefore, concentrated at the region of connection between the piles and raft. Recently, an alternative technique is proposed to disconnect the piles from the raft in a so called unconnected piled raft (UCPR) foundation, in which a compacted soil layer (cushion) beneath the raft, is usually introduced.  The piles of the new system are considered as reinforcement members for the subsoil rather than as structural members. In the current study, the behavior of unconnected piled rafts systems has been studie

... Show More
View Publication Preview PDF
Crossref (6)
Crossref