The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the time and intensity of dynamic loads applied. On the other hand, the excess pore pressure increases with increasing the dynamic loads as well as it can be noticed that under the influence of each load the excess pore pressure increases with depth. At low dynamic load level, the liquefaction was not occurred (ru<1) while with high dynamic load, high produced vertical settlement causes that the liquefaction to be occurs (ru> 1). The zone of liquefaction below the foundation cap under dynamic load produce high vertical settlement and more than the permissible settlement without piles is about (0.7 B). The effect of an increase in the number of piles leads to decrease in the vertical settlement and the excess pore pressure decreases, the decrease becomes apparent when the number of piles increases to (8 piles) or more, as well the relationship is approximately linear between the excess pore pressure and effective stress The zone of liquefaction begins to decrease as the number of piles increases, when the number of piles are equal or more than (8 piles), the liquidation of soil has not occurs and the value of pore pressure ratio is becomes (ru<1). The pile foundation which produces vertical settlement more than the allowable settlement leads to mobilize the phenomenon of liquefaction to occur. A relationship to estimate the number of piles below the cap to prevent the liquefaction was obtained.
The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes. Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2 gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil r
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThe time spent in drilling ahead is usually a significant portion of total well cost. Drilling is an expensive operation including the cost of equipment and material used during the penetration of rock plus crew efforts in order to finish the well without serious problems. Knowing the rate of penetration should help in speculation of the cost and lead to optimize drilling outgoings. Ten wells in the Nasiriya oil field have been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software based on the las files and log record provided. The average rate of penetration and average dynamic elastic propert
... Show MoreBased on a finite element analysis using Matlab coding, eigenvalue problem has been formulated and solved for the buckling analysis of non-prismatic columns. Different numbers of elements per column length have been used to assess the rate of convergence for the model. Then the proposed model has been used to determine the critical buckling load factor () for the idealized supported columns based on the comparison of their buckling loads with the corresponding hinge supported columns . Finally in this study the critical buckling factor () under end force (P) increases by about 3.71% with the tapered ratio increment of 10% for different end supported columns and the relationship between normalized critical load and slenderness ratio was g
... Show More