The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the time and intensity of dynamic loads applied. On the other hand, the excess pore pressure increases with increasing the dynamic loads as well as it can be noticed that under the influence of each load the excess pore pressure increases with depth. At low dynamic load level, the liquefaction was not occurred (ru<1) while with high dynamic load, high produced vertical settlement causes that the liquefaction to be occurs (ru> 1). The zone of liquefaction below the foundation cap under dynamic load produce high vertical settlement and more than the permissible settlement without piles is about (0.7 B). The effect of an increase in the number of piles leads to decrease in the vertical settlement and the excess pore pressure decreases, the decrease becomes apparent when the number of piles increases to (8 piles) or more, as well the relationship is approximately linear between the excess pore pressure and effective stress The zone of liquefaction begins to decrease as the number of piles increases, when the number of piles are equal or more than (8 piles), the liquidation of soil has not occurs and the value of pore pressure ratio is becomes (ru<1). The pile foundation which produces vertical settlement more than the allowable settlement leads to mobilize the phenomenon of liquefaction to occur. A relationship to estimate the number of piles below the cap to prevent the liquefaction was obtained.
Abstract:
The aerial part of Ephedra foliata Family Ephedraceae have long been used in traditional medicine and now Ephedra species have medicinal, ecological, and commercial value. The variety of pharmacological actions of this plant is due to its chemical constituents. Ephedrine and
related alkaloids; are the newly potential medicinal value of Ephedra supplements for weight loss or performance improvement. Other pharmacological actions like antibacterial and antifungal effects of the phenolic acid compounds, the immunosuppressive action of the polysaccharides, and the antitumor action of flavonoids. The genus of this plant wildly distributed t
It is found that hypersensitive teeth have a larger number and wider patent tubules than those of non-sensitive teeth. Objective: The aim of this study is to compare between the effects of diode laser at different power densities, with and without sodium fluoride on the sealing of exposed dentinal tubules and dentin permeability. Materials and methods: 118 teeth were used. Samples were divided into three major groups. The first consisted of 100 teeth used for permeability test. The second consisted of 16 teeth for measuring external surface temperature elevation while irradiation. The third, in turn, consisted of one pair of teeth observed under SEM for dentine surface morphology analysis. Results: For dentin permeability measurement, th
... Show MoreThe [2-hydroxy -1,2-diphynel-ethanone oxime] was reacted with 1,2- dichloroethan to give the new ligand [H2L].this ligand was reacted with some metal ions (Co(II),Ni(II),Cu(II),Zn(II) and Cd(II) in methanol as a solvent to give a series of new (1:1)complexes of the general formula [ M(HL)]Cl ,( where : M= Co(II),Ni(II),Cu(II),Zn(II) and Cd(II)) are isolated All compounds have been characterized by spectroscopic methods [ I.R , U.V -Vis ] atomic absorption . Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure.
synthesis and characterization of New schiff base Ligand Derived from 4-amino anti pyrine and it's complexes with some Metal lons and theirAntibacterial studies
Abstract
This Research aims for harnessing critical and innovative thinking approaches besides innovative problem solving tools in pursuing continual quality improvement initiatives for the benefit of achieving operations results effectively in water treatment plants in Baghdad Water Authority. Case study has been used in fulfilling this research in the sadr city water treatment plant, which was chosen as a study sample as it facilitates describing and analyzing its current operational situation, collecting and analyzing its own data, in order to get its own desired improvement opportunity be done. Many statistical means and visual thinking promoting methods has been used to fulfill research task.
... Show MoreThis study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO
... Show MoreThe [2-hydroxy-1, 2-diphynel-ethanone oxime] was reacted with 1, 2-dichloroethan to give the new ligand [H2L]. this ligand was reacted with some metal ions (Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) in methanol as a solvent to give a series of new (1: 1) complexes of the general formula [M (HL)] Cl,(where: M= Co (II), Ni (II), Cu (II), Zn (II) and Cd (II)) are isolated All compounds have been characterized by spectroscopic methods [IR, UV-Vis] atomic absorption. Chloride content along with conductivity measurements. From the above data the proposed molecular structure for (Co, Cu, Ni, Zn and Cd) complexes adopting a tetrahedral structure