The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the time and intensity of dynamic loads applied. On the other hand, the excess pore pressure increases with increasing the dynamic loads as well as it can be noticed that under the influence of each load the excess pore pressure increases with depth. At low dynamic load level, the liquefaction was not occurred (ru<1) while with high dynamic load, high produced vertical settlement causes that the liquefaction to be occurs (ru> 1). The zone of liquefaction below the foundation cap under dynamic load produce high vertical settlement and more than the permissible settlement without piles is about (0.7 B). The effect of an increase in the number of piles leads to decrease in the vertical settlement and the excess pore pressure decreases, the decrease becomes apparent when the number of piles increases to (8 piles) or more, as well the relationship is approximately linear between the excess pore pressure and effective stress The zone of liquefaction begins to decrease as the number of piles increases, when the number of piles are equal or more than (8 piles), the liquidation of soil has not occurs and the value of pore pressure ratio is becomes (ru<1). The pile foundation which produces vertical settlement more than the allowable settlement leads to mobilize the phenomenon of liquefaction to occur. A relationship to estimate the number of piles below the cap to prevent the liquefaction was obtained.
The developments accelerated in technology and rapid changes in the environment and increase numbers industrial countries and different desires and requirements of customers, lead to be produced in large quantities is not feasible due to changes listed above as well as the need to product variety and change in tastes and desires of consumers, all above led not to enable companies to discharge their products in the case of mass production and created the need to devise ways and new methods fit with the current situation, and accounting point no longer the traditional accounting systems able to meet the requirements needed by the companies to make decisions and know where waste and loss of resources resulting to invent new style away from
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured. The manufactured physical model could be used to simulate steady state harmonic load at different operating frequencies. Total of (84) physical models were performed. The parameters that were taken into considerations include loading frequency, size of footing and different soil conditions. The footing parameters were related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were used (100 200 12.5 mm) and (200 400 5.0 mm).
... Show MoreThis study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e
... Show MoreNatural frequency under initial stresses for simply supported cross-ply composite laminated plates (E glass- fiber) are obtained using Refind theory (RPT). This theory accounts for parabolic distribution of the transverse shear strain through the plate thickness and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. The governing equations for Eigen value problem under initial stress are derived using Hamilton’s principle and solved using Navier solution for simply supported cross-ply symmetric and antisymmetric laminated plates. The effect of many design factors such as modulus ratio, thickness ratio and number of laminates on the Natural frequency and buckling stresses
... Show MoreSoil-structure frictional resistance is an important parameter in the design of many foundation systems. The soil-structure interface area is responsible for load transferring from the structure to the surrounding soil. The mobilized shaft resistance of axially loaded, long slender pile embedded in dense, dry sand is experimentally and numerically analyzed when subjected to pullout force. Experimental setup including an instrumented model pile while the finite element method is used as a numerical analysis tool. The hypoplasticity model is used to model the soil adjacent to and surrounding the pile by using ABAQUS FEA (6.17.1). The soil-structure interface behavior depends on many factors, but mainly on the interface soi
... Show MoreIt has been shown in ionospheric research that calculation of the total electron content (TEC) is an important factor in global navigation system. In this study, TEC calculation was performed over Baghdad city, Iraq, using a combination of two numerical methods called composite Simpson and composite Trapezoidal methods. TEC was calculated using the line integral of the electron density derived from the International reference ionosphere IRI2012 and NeQuick2 models from 70 to 2000 km above the earth surface. The hour of the day and the day number of the year, R12, were chosen as inputs for the calculation techniques to take into account latitudinal, diurnal and seasonal variation of TEC. The results of latitudinal variation of TE
... Show MoreThe current study was conductedas a pot experiment to determine the effect of soil texture on biological nitrogen fixation (BNF) of six most efficient local isolates, specified, of Bradyrhizobium. Cowpea (Vignaunguiculata L.), as a legume host crop, was used as a host crop and 15N dilution analysis was used for accurate determination of the amount of N biologically fixed under experimental parameters specified. Soils used are clay loam, sandy clay loam and sandy loam. Biological Nitrogen Fixation (BNF), in different soil textural classes, was as in the following order: medium texture soil > heavy texture soil > light textured soil. Statistical analysis showed that there is a significant variation in BNF % among six Iraqi isolates in the th
... Show MoreLaser-Induced Breakdown Spectroscopy (LIBS) has been documented as an Atomic Emission Spectroscopy (AES) technique, utilising laser-induced plasma, in order to analyse elements in materials (gases, liquids and solid). The Nd:YAG laser passively Q-switched at 1064nm and 9ns pulse duration focused by convex lens with focal length 100 mm to generates power density 5.5×1012 Mw/mm2 with optical spectrum in the range 320-740 nm. Four soil samples were brought from different northern region of Iraq, northern region (Beiji, Sherkat, Serjnar and Zerkary).
The soil of the Northern region of Beige, Sherkat, Serjnar and Zarkary has abundant ratios of the elements P [0.08, 0.09, 0.18, 0.18] and Ca [0.61, 0.15, 0.92, 0.92] while it lack of Si [0.0
The effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.