The primary objective of the current paper is to suggest and implement effective computational methods (DECMs) to calculate analytic and approximate solutions to the nonlocal one-dimensional parabolic equation which is utilized to model specific real-world applications. The powerful and elegant methods that are used orthogonal basis functions to describe the solution as a double power series have been developed, namely the Bernstein, Legendre, Chebyshev, Hermite, and Bernoulli polynomials. Hence, a specified partial differential equation is reduced to a system of linear algebraic equations that can be solved by using Mathematica®12. The techniques of effective computational methods (DECMs) have been applied to solve some s
... Show MoreThis paper considers approximate solution of the hyperbolic one-dimensional wave equation with nonlocal mixed boundary conditions by improved methods based on the assumption that the solution is a double power series based on orthogonal polynomials, such as Bernstein, Legendre, and Chebyshev. The solution is ultimately compared with the original method that is based on standard polynomials by calculating the absolute error to verify the validity and accuracy of the performance.
Autorías: Muwafaq Obayes Khudhair, Hayder Talib Jasim, Ahmed Thare Hani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.
Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards
... Show MoreThe nuclear density distributions and size radii are calculated for one-proton 8B, two-proton 17Ne, one-neutron 11Be and two-neutron 11Li halo nuclei. The theoretical outlines of calculations assume that the nuclei understudy are composed of two parts: the stable core and the unstable halo. The core part is studied using the radial wave functions of harmonic-oscillator (HO) potentials, while the halo is studied through Woods-Saxon (WS) potential. The long tail behaviour which is the main characteristic of the halo nuclei are well generated in comparison with experimental data. The calculated size radii are in good agreement with experimental values. The elastic electron scattering form factors of the C0 component are also c
... Show MoreAn Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi
Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .
An effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
ABSTRACT
Ticagrelor is an orally administered antiplatelet medicine, direct-acting P2Y12-receptor antagonist. Ticagrelor binds reversibly and noncompetitively to the P2Y12 receptor at a site distinct from that of the endogenous agonist adenosine diphosphate (ADP). Inhibition of platelet aggregation stimulated by ADP is a commonly used pharmacodynamic parameter for P2Y12-receptor antagonists.
Ticagrelor is a crystalline powder with an aqueous solubility of approximately 10?g/mL at room temperature.
... Show More