An intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive controller, to manage the clustering in the sensing area of the spike ISDN-IoT. Hence, an intelligent queuing model is introduced to manage the flow table buffer capacity of the spike ISDN-IoT network, such that the quality of service (QoS) of the whole network is improved. A modified training algorithm is introduced to train the PRSNN to adjust its weight and threshold. The simulation results demonstrate that the QoS is improved by (14.36%) when using the proposed model as compared with a convolutional neural network.
Information security is a crucial factor when communicating sensitive information between two parties. Steganography is one of the most techniques used for this purpose. This paper aims to enhance the capacity and robustness of hiding information by compressing image data to a small size while maintaining high quality so that the secret information remains invisible and only the sender and recipient can recognize the transmission. Three techniques are employed to conceal color and gray images, the Wavelet Color Process Technique (WCPT), Wavelet Gray Process Technique (WGPT), and Hybrid Gray Process Technique (HGPT). A comparison between the first and second techniques according to quality metrics, Root-Mean-Square Error (RMSE), Compression-
... Show MoreThere has been a great deal of research into the considerable challenge of managing of traffic at road junctions; its application to vehicular ad hoc network (VANET) has proved to be of great interest in the developed world. Dynamic topology is one of the vital challenges facing VANET; as a result, routing of packets to their destination successfully and efficiently is a non-simplistic undertaking. This paper presents a MDORA, an efficient and uncomplicated algorithm enabling intelligent wireless vehicular communications. MDORA is a robust routing algorithm that facilitates reliable routing through communication between vehicles. As a position-based routing technique, the MDORA algorithm, vehicles' precise locations are used to establish th
... Show MoreRecently, Image enhancement techniques can be represented as one of the most significant topics in the field of digital image processing. The basic problem in the enhancement method is how to remove noise or improve digital image details. In the current research a method for digital image de-noising and its detail sharpening/highlighted was proposed. The proposed approach uses fuzzy logic technique to process each pixel inside entire image, and then take the decision if it is noisy or need more processing for highlighting. This issue is performed by examining the degree of association with neighboring elements based on fuzzy algorithm. The proposed de-noising approach was evaluated by some standard images after corrupting them with impulse
... Show MoreThis work aims to develop a secure lightweight cipher algorithm for constrained devices. A secure communication among constrained devices is a critical issue during the data transmission from the client to the server devices. Lightweight cipher algorithms are defined as a secure solution for constrained devices that require low computational functions and small memory. In contrast, most lightweight algorithms suffer from the trade-off between complexity and speed in order to produce robust cipher algorithm. The PRESENT cipher has been successfully experimented on as a lightweight cryptography algorithm, which transcends other ciphers in terms of its computational processing that required low complexity operations. The mathematical model of
... Show MoreA Multiple System Biometric System Based on ECG Data
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.