The Mannich base ligand was synthesized in an ethanol medium through a condensation reaction of 2-mercaptobenzimidazole and ciprofloxacin at room temperature. Subsequently, several metal complexes of this ligand were prepared. To characterize both the base ligand and the metal complexes, various techniques were employed, including elemental analysis, FT-IR spectroscopy, UV-Vis spectroscopy, molar conductivity measurements, magnetic moment determination, and melting point analysis. The results were shown that the metal complexes formed have the formula [Cr(L)2Cl2] Cl.H2O and [Rh(L)2(H2O)2] Cl3.H2O, where L= mannich base ligand. Based on spectroscopic analytical, coordination with metal ions involves the 'N' donor atom of mannich base and 'N' atom of piprizaing ring, and two complexes are A six-coordinated octahedral structure is suggested. Molar conductivity of these complexes showed that they were electrolytic in nature. In this study, the anticancer and antioxidant potential of the Mannich base ligand and its metal complexes were investigated against MDA-MB-231 cell lines and using the DPPH free radical scavenging assay. Moreover, the in vitro efficacy of the ligand and its complexes against Gram-negative bacteria (E. coli) and Gram-positive bacteria (Staphylococcus aureus), as well as the fungal strain Candida albicans, was evaluated using the disc diffusion method. The results indicated that Cr (III) and Rh(III) complexes demonstrated the highest levels of cytotoxicity against MDA-MB-231 cell lines, enhances antioxidant and antimicrobial activity more than the free ligand. These findings suggest that these metal complexes may have promising applications in the development of novel anticancer, antioxidant and antimicrobial agents.
Coupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show MoreAnew mixed compound complexes derived from 2-phenyl-2-(o-tolylamino) Acetonitrile as primary ligand (L1) and histidine (L2) as secondary ligand have been prepared and characterized by conventional techniques, elemental microanalysis (C.H.N), Fourier transform infrared, ultra violet-visible spectra, , flame atomic absorption, molar conductivity, magnetic susceptibility measurement and 1H-NMR spectra. From IR data which appear chelating behavior of the amino acid ligand (L2) toward transition metal ions is via carboxylate oxygen, amino nitrogen and imidazol nitrogen as tridentate ligand while second ligand (L1) chelating through N-nitrile and N-aniline, according to all above technics the octahedral shapes were expected for these complexes as
... Show MoreIn this work 2-hydrazino pyrimidine (1) was prepared from 2-mercapto pyrimidine with hydrazine hydrate. Treatment of (1) with active methylene compounds gave 2-(3,5-dimethyl -1 H – Pyrazole-1-yl) pyrimidine , whereas the reaction of (1) with carboxylic anhydride namely maleic anhydride or 1,2,3,6-tetra hydro phthalic anhydride yielded 1-Pyrimidine-2-yl-1,2-dihydro pyridazine-3,6-dione (3) and 2 – Pyrimidin -2-yl -2,3,4 a ,5,8 a – hexahydro phthalazine 1,4 – dione (4) . Reaction of (1) with phenyl isothiocyanate and ethyl chloro acetate afforded 3-Phenyl-1,3-thiazolidine-2,4-dione-2( pyrimidine -2- yl hydrazone (6) Azomethine (7-10) were prepared through condensation of (1) with aromatic aldehydes or ketones, then comp
... Show MoreSome new mono isoimides of asymmetrical pyromillitdiimide derived from pyromellitic dianhydride were synthesized and studied by their melting points, FTIR, and 1HNMR spectroscopy and CHN analysis (for some of them) and it was proved that the mechanism of the formation of these isoimides followed, the mechanism suggested by Cotter et al. by using N, N─-dicyclohexylcarbodiimide as dehydrating agent, in spite of the groups attached to the phenyl moiety as mentioned in literatures.
New series of 2-mecapto benzoxazole derivatives (1-20) incorporated into fused to different nitrogen and suphur containing heterocyclic were prepared from 2-meracpto benzoxazole, when treated with hydrazine hydrate to afford 2-hydrazino benzoxazol (1). Compound (1) converted to a variety of pyridazinone andphthalazinone derivatives (2-4) by reaction with different carboxylic anhydride. Also, reaction of (1) with phenyl isothiocyanate and ethyl chloro acetate afforded 3-phenyl-1,3-thiazolidin-2,4-dione-2-(benzoxazole-2-yl-hydrazone) (6). Azomethines (7-10) were prepared through reaction of (1) with aromatic aldehyde, then (7, 8) converted to thaizolidinone derivatives (11, 12). Treatment of (1) with active methylene compounds afforded deriva
... Show MoreComplexes of (Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+) with the ligand Ethyl cyano (2-methyl carboxylate phenyl azo acetate) (ECA) have been prepared and characterized by FTIR, (UV-Visible), Atomic absorption spectroscopy, Molar conductivity measurements and magnetic moments measurements. The following general formula has been suggested for the prepared complexes [M(ECA)2]Cl2 where M = (Co2+, Ni2+, Cu2+ ,Zn2+, Cd2+, Hg2+) and the geometry is octahedral.
A new derivatives of Schiff bases connected with 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c were prepared via many reactions starting by treating 1,4-phenylene diamine 1 with chloroacetylchloride to prepared compound 2, then reaction with p-hydroxybenzaldehyde to synthesize compound 3 then, this was reacted with thioglycolic acid and thiosemicarazide to giveN,N-(1.4-phenylene)bis(2-(4-(2-amino-5Hthiazolo[4,3-b][1,3,4]thiadiazol-5-yl)phenoxy)acetamide) 4. Compound 4 was treated with different aromatic aldehydes to give a new derivatives of Schiff bases containing 5H-thiazolo[3,4-b][1,3,4]thiadiazole ring 5a-c. The synthesized compounds were characterized using FTIR spectrophotometer and 1H NMR spectroscopy and the biological activity of
... Show MoreThe present work elucidates the utilization of activated carbon (AC) and activated carbon loaded with silver nanoparticles (AgNPs-AC) to remove tetracycline (TC) from synthetically polluted water. The activated carbon was prepared from tea residue and loaded with silver nanoparticles. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) were used to characterize the activated carbon (AC) and silver nanoparticles-loaded activated carbon (AgNPs-AC). The impact of various parameters on the adsorption effectiveness of TC was examined. These variables were the initial adsorbate concentration (Co), solution acidity (pH), adsorption time (t), and dosag
... Show More