Preferred Language
Articles
/
QBeJP48BVTCNdQwCDWaI
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (13)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Intelligent Systems
A study on predicting crime rates through machine learning and data mining using text
...Show More Authors
Abstract<p>Crime is a threat to any nation’s security administration and jurisdiction. Therefore, crime analysis becomes increasingly important because it assigns the time and place based on the collected spatial and temporal data. However, old techniques, such as paperwork, investigative judges, and statistical analysis, are not efficient enough to predict the accurate time and location where the crime had taken place. But when machine learning and data mining methods were deployed in crime analysis, crime analysis and predication accuracy increased dramatically. In this study, various types of criminal analysis and prediction using several machine learning and data mining techniques, based o</p> ... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 29 2022
Journal Name
International Journal Of Health Sciences
effect of sensory marketing in enhancing customer loyalty by mediating marketing knowledge, survey research in a group of large single market in Baghdad
...Show More Authors

The research aims to measure the effect of sensory marketing (visual marketing, audio marketing, olfactory marketing, taste marketing, tactile marketing) in enhancing customer loyalty (behavioral loyalty, situational loyalty, perceptual loyalty) and the mediating role of marketing knowledge (product knowledge, price knowledge, promotion knowledge knowledge of distribution, knowledge of employees, knowledge of physical evidence, knowledge of the process) in a group of large single market markets in Baghdad and the researcher chose it because of the challenges faced by large single market in satisfying the customer and maintaining it as a permanent visitor and enhancing his loyalty, and the research problem was identified with a main

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Ieee Transactions On Robotics
Lidar-Level Localization With Radar? The CFEAR Approach to Accurate, Fast, and Robust Large-Scale Radar Odometry in Diverse Environments
...Show More Authors

View Publication
Scopus (30)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Mon Feb 28 2022
Journal Name
Journal Of Educational And Psychological Researches
Social Support and Its Relationship to Psychological Rigidity in a Sample of Breast Cancer Patients In the Ramallah and Al-Bireh Governorate
...Show More Authors

This study aims to identify the impact of social support on breast cancer patients’ psychological rigidity using a sample in Ramallah and al-Bireh. A descriptive correlative approach was adopted to fulfill the goals of the study and a questionnaire consisted of two criteria: social support and psychological rigidity, which was adopted as a tool for data collection for the study. In order to achieve the goals of the study, the researcher selected a convenient sample that consisted of 123 female breast cancer patients in Ramallah and al-Bireh. This sample represented 50% of the original patient population. The study showed that the average estimated percentage of social support and psychological rigidity for women with breast cancer, in

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 06 2014
Journal Name
2nd International Conference On Innovation And Entrepreneurship
Is the Organizational Performance of Small Businesses Influenced by HRM Practices and the Governmental Support? A Case of Small Manufacturing Businesses in Malaysia
...Show More Authors

YY Lazim, NAB Azizan, 2nd International Conference on Innovation and Entrepreneurship, 2014

View Publication Preview PDF
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (53)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iop Conference Series: Earth And Environmental Science
A study Some Technical Indicators Under Impact Tillage Depth and Disk harrow Angle of the Compound Machine
...Show More Authors
Abstract<p>The research included studying the effect of different plowing depths (10,20and30) cm and three angles of the disc harrows (18,20and25) when they were combined in one compound machine consisting of a triple plow and disc harrows tied within one structure. Draft force, fuel consumption, practical productivity, and resistance to soil penetration. The results indicated that the plowing depth and disc angle had a significant effect on all studied parameters. The results showed that when the plowing depth increased and the disc angle increased, leads to increased pull force ratio, fuel consumption, resistance to soil penetration, and reduce the machine practical productivity.</p>
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref