Preferred Language
Articles
/
QBeJP48BVTCNdQwCDWaI
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Test Engineering & Management
Strengthening of non-liner finite element RCMD Beam with Large Square Opening Using CFRP
...Show More Authors

Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Geological Journal
Large Benthonic Foraminifera Biozonation of Mishrif Formation at Tuba and Zubair Oilfield, Southern Iraq
...Show More Authors

Mishrif Formation was deposited during The Cenomanian-Early Turonian, which has been studied in selected Tuba and Zubair OilFields, these wells (TU-5, TU-24, TU-40, ZB-41, ZB-42, and ZB-46) are located within Mesopotamian basin at southern Iraq and considered as a major carbonate reservoir in Iraq and the Arabian Gulf. The palaeontological investigations mainly depending on benthonic foraminifera of the studied wells of Tuba and Zubair Oilfields in Mishrif Formation, twenty-four species belonging to fourteen genera are recognized of benthonic foraminifera, which has been recognized through this study, especially benthonic foraminiferal, indicating four zones as follows:

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
DETERMINATION OF THE OPTIMUM OPERATING CONDITIONS IN THE GRANULATION OF GAMMA ALUMINA CATALYST SUPPORT
...Show More Authors

Granulation Technique for Gamma Alumina Catalyst Support was employed in inclined disk granulator (IDG), rotary drum granulator (RD) and extrusion – spheronization equipments .Product with wide size range can be produced with only few parameters like rpm of equipment, ratio of binder and angle of inclination. The investigation was conducted for determination the optimum operating conditions in the three above different granulation equipments.
Results reveal that the optimum operating conditions to get maximum granulation occurred at ( speed: 31rpm , Inclination:420 , binder ratio:225,300% ) for the IDG,( speed: 68rpm , Inclination: 12.50 , binder ratio: 300% ) for the RD and ( speed:1200rpm , time of rotation: 1-2min )for the Caleva

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 21 2022
Journal Name
Environmental Science And Pollution Research
Development of new computational machine learning models for longitudinal dispersion coefficient determination: case study of natural streams, United States
...Show More Authors

View Publication
Crossref (25)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Land Classification Wadi Al-Salam Basin
...Show More Authors

Dry environment study forms an important part in the field of applies geomorphology for
the wide rang of its lands which form most of the world, homeland, and Iraqi lands specially,
and what these lands include of scientific cases which needs to be searched and investigated.
They include rocks, land shapes, water supplements, its ancient soil and its active diggings are
all signs of the environment changes and effects that these lands under take over time, with
continuous remains of its features of characteristics under geo morphological dry
circumstances which works to slow change average, when the geomorphologic fearers varies
in this environment and what it contain of important economical resource. As to participl

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 31 2014
Journal Name
Al-khwarizmi Engineering Journal
Catalytic Cracking of Iraqi Vacuum Gasoil Using Large and Medium Pore Size of Zeolite Catalysts
...Show More Authors

Abstract 

The catalytic cracking conversion of Iraqi vacuum gas oil was studied on large and medium pore size (HY, HX, ZSM-22 and ZSM-11) of zeolite catalysts. These catalysts were prepared locally and used in the present work. The catalytic conversion performed on a continuous fixed-bed laboratory reaction unit. Experiments were performed in the temperature range of 673 to 823K, pressure range of 3 to 15bar, and LHSV range of 0.5-3h-1. The results show that the catalytic conversion of vacuum gas oil increases with increase in reaction temperature and decreases with increase in LHSV. The catalytic activity for the proposed catalysts arranged in the following order:

HY>H

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Iraqi Journal Of Physics
Ab–Initio large unit cell calculations of the electronic structure of Si and Ge nanocrystals
...Show More Authors

Ab – initio restricted Hartree - Fock method within the framework of large unit cell (LUC) formalism is used to investigate the electronic structure of Si and Ge nanocrystals. The surface and core properties are investigated. A large unit cell of 8 atoms is used in the present analysis. Cohesive energy, energy gap, conduction and valence band widths are obtained from the electronic structure calculations. The results are compared with available experimental data and theoretical results of other investigators. The calculated lattice constant is found to be slightly larger than the corresponding experimental value because we use only 8 atoms and we compared the results with that of the bulk crystals, nanoclusters are expected to have str

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref