Preferred Language
Articles
/
QBeJP48BVTCNdQwCDWaI
Multiresolution hierarchical support vector machine for classification of large datasets
...Show More Authors

Support vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in comparison with existing SVM algorithms.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Water Resource And Hydraulic Engineering (jwrhe)
Large Scale Field Physical Model Simulation of Roseires Dam-Break, Sudan
...Show More Authors

Physically based modeling approach has been widely developed in recent years for the simulation of dam failure process due to the lack of field data. This paper provides and describes a physically-based model depending on dimensional analysis and hydraulic simulation methods for estimating the maximum water level and the wave propagation time from breaching of field test dams. The field physical model has been constructed in Dabbah city to represent the collapse of the Roseires dam in Sudan. Five cases of a dam failure were studied to simulate water flood conditions by changing initial water height in the reservoir (0.8, 1.0, 1.2, 1.4 and 1.5 m respectively).The physical model working under five cases, case 5 had the greatest influence of t

... Show More
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Numerical Investigation of Physical Parameters in Cardiac Vessels as a New Medical Support Science for Complex Blood Flow Characteristics
...Show More Authors

This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Analytical Study Compared Between Poisson and Poisson Hierarchical Model and Applied in Healthy Field
...Show More Authors

Through this research, We have tried to evaluate the health programs and their effectiveness in improving the health situation through a study of the health institutions reality in Baghdad to identify the main reasons that affect the increase in maternal mortality by using two regression models, "Poisson's Regression Model" and "Hierarchical Poisson's Regression Model". And the study of that indicator (deaths) was through a comparison between the estimation methods of the used models. The "Maximum Likelihood" method was used to estimate the "Poisson's Regression Model"; whereas the "Full Maximum Likelihood" method were used for the "Hierarchical Poisson's Regression Model

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A Note on the Hierarchical Model and Power Prior Distribution in Bayesian Quantile Regression
...Show More Authors

  In this paper, we investigate the connection between the hierarchical models and the power prior distribution in quantile regression (QReg). Under specific quantile, we develop an expression for the power parameter ( ) to calibrate the power prior distribution for quantile regression to a corresponding hierarchical model. In addition, we estimate the relation between the  and the quantile level via hierarchical model. Our proposed methodology is illustrated with real data example.

View Publication Preview PDF
Crossref
Publication Date
Tue Dec 27 2022
Journal Name
2022 3rd Information Technology To Enhance E-learning And Other Application (it-ela)
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Journal Of The College Of Education For Women
Astronomi cal Color Image Compression Using Multilevel Block Truncation Coding –Modified Vector Quantization Technique
...Show More Authors

A common approach to the color image compression was started by transform
the red, green, and blue or (RGB) color model to a desire color model, then applying
compression techniques, and finally retransform the results into RGB model In this
paper, a new color image compression method based on multilevel block truncation
coding (MBTC) and vector quantization is presented. By exploiting human visual
system response for color, bit allocation process is implemented to distribute the bits
for encoding in more effective away.
To improve the performance efficiency of vector quantization (VQ),
modifications have been implemented. To combines the simple computational and
edge preservation properties of MBTC with high c

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
The effectiveness of internal and external auditing in support Corporate governance
...Show More Authors

The study aims at showing the active role of the internal auditors through explaining what they should be obliged to in writing the reports and financial and non financial statements according to the international standards of accounting to be transparent and integral. It also aims at giving the independence that the auditors should enjoy through connecting them to an Auditing Commissions to submit additional services in addition to assessing the instrument of control to evaluate risks, give consultations and the services related to the governance and independence of Supervising Council.                         

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (5)
Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
PDCNN: FRAMEWORK for Potato Diseases Classification Based on Feed Foreword Neural Network
...Show More Authors

         The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work  is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (1)
Scopus Clarivate Crossref