Preferred Language
Articles
/
QBdXoo8BVTCNdQwCEXwq
طريقة مقترحة لتغيير حجم الصورة باستخدام منحني Bezier

عملية تغيير حجم الصورة في مجال معالجة الصور باستخدام التحويلات الهندسية بدون تغيير دقة الصورة تعرف ب image scaling  او image resizing. عملية تغيير حجم الصورة لها تطبيقات واسعة في مجال الحاسوب والهاتف النقال والاجهزة الالكترونية الاخرى. يقترح هذا البحث طريقة لتغيير حجم الصورة باستخدام المعادلات الخاصة بمنحني Bezier وكيفية الحصول على افضل نتائج. تم استخدام Bezier curve في اعمال سابقة في مجالات مختلفة ولكن في هذا البحث تم استخدام معادلات ال Bezier curve في تغيير حجم الصور. فكرة استخدام معدلات Bezier curve في تغيير حجم الصور تاتي من خاصية توليد النقاط التي تقع على المنحني والتي تعمل على سحب احداثيات النقاط الموجودة في الصورة بالاعتماد على شكل المنحني وبالتالي تغيير حجم الصورة. تتميز هذه الخوارزمية بسرعة الاداء في تغيير حجم الصور لذلك فهي مفيدة في مجال معالجة الصور والتطبيقات الواقعية التي تحتاج الى تغيير حجم الصور بسرعة هائلة. تم اختبار دقة الخوارزمية باستخدام مقاييس MSE و SNR و PSNR حيث تم تطبيق المقاييس على الصور الاصلية و الصور المسترجعة من عملية تغيير حجم الصورة وكانت النتائج مقبولة كطريقة مقترحة وسريعة لتغيير حجم الصور. وتم استنتاج ان الخوارزمية تعطي افضل النتائج في تصغير او تكبير الصور عندما تكون عدد النقاط المستخدمة في توليد المنحني زوجية اما اذا كانت عدد النقاط فردية فسوف يكون هنالك ضياع في جزء من الصورة الذي يعتمد على معامل التغيير.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Tue Oct 15 2019
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Combining Convolutional Neural Networks and Slantlet Transform For An Effective Image Retrieval Scheme

In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),

... Show More
Scopus (10)
Crossref (2)
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of parameters of two-dimensional sinusoidal signal model by employing Deferential Evaluation algorithm and the use of Sequential approach in estimation

Estimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model  in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling  the Symmetric gray scale texture image and estimating by using

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Diagnosis of Malaria Infected Blood Cell Digital Images using Deep Convolutional Neural Networks

     Automated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN

... Show More
Scopus (10)
Crossref (6)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Indian Journal Of Pathology And Microbiology
Assessment of topoisomerase II-alpha gene status by dual color chromogenic in situ hybridization in a set of Iraqi patients with invasive breast carcinoma

Abstract Background: The human epidermal growth factor receptor 2(HER2) proto-oncogene is overexpressed or amplified in approximately 15%-25% of invasive breast cancers. Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. Hence, the determination of genetic alteration (amplification or deletion) of both genes is considered as an important predictive factor that determines the response of breast cancer patients to treatment. The aims of this study are to determinate TOP2A status gene amplification in a set of Iraqi patients with breast cancer that have had an equivocal (2+) and positive HER2/neu by immunohistochemistry

... Show More
Scopus (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On y-closed Dual Rickart Modules

In this paper, we develop the work of Ghawi on close dual Rickart modules and discuss y-closed dual Rickart modules with some properties. Then, we prove that, if are y-closed simple -modues and if -y-closed is a dual Rickart module, then either Hom ( ) =0 or . Also, we study the direct sum of y-closed dual Rickart modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Linear Feedback Shift Registers-Based Randomization for Image Steganography

     Steganography involves concealing information by embedding data within cover media and it can be categorized into two main domains: spatial and frequency. This paper presents two distinct methods. The first is operating in the spatial domain which utilizes the least significant bits (LSBs) to conceal a secret message. The second method is the functioning in the frequency domain which hides the secret message within the LSBs of the middle-frequency band of the discrete cosine transform (DCT) coefficients. These methods enhance obfuscation by utilizing two layers of randomness: random pixel embedding and random bit embedding within each pixel. Unlike other available methods that embed data in sequential order with a fixed amount.

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Jan 18 2022
Journal Name
Iraqi Journal Of Science
Restoration of Digital Images Using an Iterative Filter Algorithm

Digital image started to including in various fields like, physics science, computer science, engineering science, chemistry science, biology science and medication science, to get from it some important information. But any images acquired by optical or electronic means is likely to be degraded by the sensing environment. In this paper, we will study and derive Iterative Tikhonov-Miller filter and Wiener filter by using criterion function. Then use the filters to restore the degraded image and show the Iterative Tikhonov-Miller filter has better performance when increasing the number of iteration To a certain limit then, the performs will be decrease. The performance of Iterative Tikhonov-Miller filter has better performance for less de

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Small Binary Codebook Design for Image Compression Depending on Rotating Blocks

     The searching process using a binary codebook of combined Block Truncation Coding (BTC) method and Vector Quantization (VQ), i.e. a full codebook search for each input image vector to find the best matched code word in the codebook, requires a long time.   Therefore, in this paper, after designing a small binary codebook, we adopted a new method by rotating each binary code word in this codebook into 900 to 2700 step 900 directions. Then, we systematized each code word depending on its angle  to involve four types of binary code books (i.e. Pour when , Flat when  , Vertical when, or Zigzag). The proposed scheme was used for decreasing the time of the coding pro

... Show More
Scopus Crossref
View Publication Preview PDF