The purpose of this paper is to identifying the relationship between some visual functions and the level of achievement of air rifle shooting among young Iraqi female, and identifying the relationship between some functional variables of the respiratory and nervous systems at the level of achievement of air rifle shooting among young Iraqi female. The researchers used the descriptive approach in the correlative relationships style for its suitability and the research problem. The researchers determined the research community by the intentional method represented by (10) young female shooters who represent the national team with air rifle shooting effectiveness, and who represent (100%) of the research community. One of the most important results reached by the researcher is that: There is a significant correlation between all visual function tests (visual acuity, static and moving visual field, bilateral visual efficiency, visual reaction time, color visual sensitivity variation, and visual search) with the level of achievement of air rifle shooting, there is a significant correlation between all functional tests of the respiratory system (breath-holding, vital capacity, anaerobic step test (lactic anoxygenic capacity), and Harvard step test) with the level of achievement of air rifle shooting, there is a significant correlation between all functional tests of the nervous system ( Ashner test (eye-cardiac reaction -pre-test), Romberg test (keeping balance), and horizontal linear space sensation test) with the level of achievement of air rifle shooting. One of the most important recommendations recommended by the researchers is that: The trainers’ interest in developing training programs that include visual function tests and functional tests of the respiratory and nervous systems because of their importance in the development of achievement among shooters, and re-tests all the variables that were dealt with in the current study and try to find the relationship with the level of achievement of air pistol shooting.
Soil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreThe performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 198
... Show MoreThis study was conducted to determine the effect of different concentrations of ethanol extract of propolis against two fungi Botrytis cinerea, Altrnaria sp. The most important chemical constituents of propolis diagnosed by the Infra Red Spectroscopy, were the Flavonoids specificaly. Results showed a high antifungal activity of ethanol extract of propolis, evidently with a high concentration of extract (5) mg\ml, which completely inhibited the radial growth on both solid and liquid media (PDA &PD Broth ) of both fungi . We observed that , ethanol extract p
... Show MoreIn this research, we studied the impact of Magnetohydrodynamic (MHD) on Jeffrey fluid with porous channel saturated with temperature-dependent viscosity (TDV). It is obtained on the movement of fluid flow equations by using the method of perturbation technique in terms of number Weissenberg ( ) to get clear formulas for the field of velocity. All the solutions of physical parameters of the Reynolds number , Magnetic parameter , Darcy parameter , Peclet number and are discussed under the different values, as shown in the plots.
ABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
The present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst ty
... Show MoreIn this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm
... Show More