During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MorePurpose: Despite the high clinical accuracy of dynamic navigation, inherent sources of error exist. The purpose of this study was to improve the accuracy of dynamic navigated surgical procedures in the edentulous maxilla by identifying the optimal configuration of intra-oral points that results in the lowest possible registration error for direct clinical implementation. Materials and methods: Six different 4-area configurations were tested by 3 operators against positive and negative controls (8-areas and 3-areas, respectively) using a skull model. The two dynamic navigation systems (X-Guide® and NaviDent®) and the two registration methods (bone surface tracing and fiducial markers) produced four registration groups. The accuracy of the
... Show MoreGoal of research is to investigate the impact of the use of effective learning model in the collection of the fourth grade students/Department of physics in the material educational methods and the development of critical thinking .to teach this goal has been formulated hypothesis cefereeten zero subsidiary of the second hypothesis .To investigate the research hypothesis were selected sample of fourth-grade students of the department of physics at the univers
... Show MoreTwitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based dat
... Show MoreBackground: Animal bite is one of the public health problems all over the world, especially in poor countries. Animal bites have an impact on human health due to rabies disease, which is a viral transmitted disease from animal to human with a high mortality rate.
Objective: To determine the epidemiological characteristics of animal bite cases by person, time, and place.
Method: Descriptive cross sectional study was done by reviewing cases caused by animal bites., Data including the demographic characteristics of age, gender, occupation, site of bite, and attending health institutions searching treatment were all included.
Results: There were 11600 animal bite cases. Most of bites caused by stray dogs 11577(99.8%), and the males
KE Sharquie, AA Noaimi, WK Al-Janabi, Journal of Cosmetics, Dermatological Sciences and Applications, 2013
There are many studies dealt with handoff management in mobile communication systems and some of these studies presented handoff schemes to manage this important process in cellular network. All previous schemes used relative signal strength (RSS) measurements. In this work, a new proposed handoff scheme had been presented depending not only on the RSS measurements but also used the threshold distance and neighboring BSS power margins in order to improve the handoff management process. We submitted here a threshold RSS as a condition to make a handoff when a mobile station moves from one cell to another this at first, then we submitted also a specified margin between the current received signal and the ongoing BS's received signal must be s
... Show More