During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show More<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract
... Show More