During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Shadow removal is crucial for robot and machine vision as the accuracy of object detection is greatly influenced by the uncertainty and ambiguity of the visual scene. In this paper, we introduce a new algorithm for shadow detection and removal based on different shapes, orientations, and spatial extents of Gaussian equations. Here, the contrast information of the visual scene is utilized for shadow detection and removal through five consecutive processing stages. In the first stage, contrast filtering is performed to obtain the contrast information of the image. The second stage involves a normalization process that suppresses noise and generates a balanced intensity at a specific position compared to the neighboring intensit
... Show MorePhotoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreBackground: Sprite coding is a very effective technique for clarifying the background video object. The sprite generation is an open issue because of the foreground objects which prevent the precision of camera motion estimation and blurs the created sprite. Objective: In this paper, a quick and basic static method for sprite area detection in video data is presented. Two statistical methods are applied; the mean and standard deviation of every pixel (over all group of video frame) to determine whether the pixel is a piece of the selected static sprite range or not. A binary map array is built for demonstrating the allocated sprite (as 1) while the non-sprite (as 0) pixels valued. Likewise, holes and gaps filling strategy was utilized to re
... Show MoreTissue culture of Catharanthus roseus was established under many parameters to insure good results for detection of the alkaloids present in this plant . It was found that NItsch and Nitsch medium containing 8µM Benzyladeninpurine plus Naphalene acetic acid were the best and the callus of C.roseus left to grow in the dark and had much better influence for the production of Alkloids. The precursor phenylalanine showed a better result than other precursor( tryptophan ) . Abscisic acid has an inhibitory effect on the production of Alkaloid
Diverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction cost
... Show MoreLandSat Satellite ETM+ image have been analyzed to detect the different depths of regions inside the Tigris river in order to detect the regions that need to remove sedimentation in Baghdad in Iraq Country. The scene consisted of six bands (without the thermal band), It was captured in March ٢٠٠١. The variance in depth is determined by applying the rationing technique on the bands ٣ and ٥. GIS ٩. ١ program is used to apply the rationing technique and determined the results.
The present study aims at empirically investigating the effect of vocabulary learning strategies on Iraqi intermediate school students’vocabulary performance and reading comprehension. The population of the present study includes all the 1st year male students of Al-Wark’a intermediate school of Al-Risafa 1/ General Directorate of Education for the first course of the academic year (2015-2016). To achieve the aim of the study ,a pre-test and post-test after (5) weeks of experiment are administrated .The sample of the present study consists of (100) subjects :(50) students as an experimental group and other (50) students as a control group . The subj
... Show More