During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show MoreTooth restoration one of the most common procedures in dental practice. The replacement of the entire restoration leads to loss of tooth structure and increase risk of pulp injury; replacement is also time consuming and costly. According to the minimally invasive approach when minimal defects, repair is the better choice than the total replacement of the restoration. This study aims to evaluate repair rating versus replacement treatment procedure for defective composite fillings among Iraqi dentists. Material and methodology: A questionnaire survey were designed and distributed to 184 post-graduate dentists in Iraq. The inquiry pertained general information; including their clinical experience in years, their preference in terms of direct c
... Show MoreSilica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,
... Show MoreLafutidine (LAF) a newly developed histamine H2-receptor antagonist with absorption window makes it a good candidate to be prepared as floating drug delivery system. The current study involves formulation and in- Vitro evaluation of lafutidine as floating microspheres. Different formulation variables that affect the physicochemical properties of the prepared microspheres besides to the drug release behavior were investigated. Fourteen formulas were prepared by emulsion (o/w) solvent evaporation method using Ethyl cellulose (EC) as the polymeric matrix and tween 80 (TW80) as an emulsifying agent. The prepared formulas were evaluated for their percentage buoyancy (%), Percentage yield (%) and Entrapment efficiency (EE %). The results obt
... Show More
Breast cancer is one of the most common cancers in females. In Iraq there are noticeable elevation in incidence rates and prevalence of advanced stages of breast cancer. Ferritin is intracellular iron storage protein abundant in circulation and its main application in differential diagnosis of anemia.
The level of serum ferritin was found raised in various cancers including breast cancer. The aim of this study was to assess whether the serum ferritin concentration would be altered in Iraqi women with breast cancer and it could be related to progression of disease.
Sixty eight females participated in this study. The mean age of these females was 53.25± 9.52 .The level of serum ferritin was measured in 24
... Show MoreBackground:SARS-CoV-2 infection has caused a global pandemic that continues to negatively impact human health. A large group of microbial domains including bacteria co-evolved and interacted in complex molecular pathogenesis along with SARS-CoV-2. Evidence suggests that periodontal disease bacteria are involved in COVID-19, and are associated with chronic inflammatory systemic diseases. This study was performed to investigate the association between bacterial loads of Porphyromonas gingivalis and pathogenesis of SARS-CoV-2 infection. Fifty patients with confirmed COVID-19 by reverse transcriptase-polymerase chain reaction, their age ranges between 20-76 years, and 35 healthy volunteers (matched accordingly with age and sex to th
... Show More