The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and 9.1% was achieved for 7, 28, and 90 days, respectively. The mixture of SCC showed the highest improvement up to 16.2, 15.8, and 12.4% for 7, 28, and 90 days, respectively. The effect of MW is significant for 7 days compared to 28 and 90 days. An increase in the water content to cementitious material presents the more efficiency of MW, while the combined effect of MW and superplasticizer in SCC showed the best improvement with less water content for 35 MPa grade.
A study of irrigation water was conducted Baghdad city to find out extent of its pollution by some heavy metals (Pb, Cd, Ni, Co, CU, Cr, Zn and Fe). Water samples were collected randomly from different sources (river, well and stream). Results showed that the concentration of studied heavy metals were as follows: Lead between 0.43-11.75 mg L-1, Cadmium between 0.01-0.95 mg L-1, Nickel between 0.008-0.46 mg L-1, Cobalt between Nil - 0.185 mg L-1, Copper is between 0.326 - 1.58 mg L-1, Chromium is between Nil-0.068 mg L-1, Zinc 0.398-1.182 mg L-1, as for Iro
The present work aims to study the possibility of utilization a forward osmosis desalination process as an alternative method to extract water from brine solution rejected from reverse osmosis process.
Experiments conducted in a laboratory–scale forward osmosis (FO) unit in cross flow flat sheet membrane cell yielded water flux ranging from (0.0315 to 0.56 L/m2 .min) when using CTA membrane,and ranging from (0.419 to 2.785 L/m2 .min) for PA membrane under 0.4 bar. Two possible membrane orientations were tested. Sodium chloride with high concentrations was used as draw solution solute. The effect of membrane orientation on internal concentration polarization (ICP) was studied. Two regimes of ICP; dilutive and concentrative were desc
Oil/water emulsions are one of the major threats to environment nowadays, occurs at many stages in the production and treatment of crude oil. The oil recovery process adopted will depend on how the oil is present in the water stream. Oil can be found as free oil, as an unstable oil/water emulsion and also as a highly stable oil/water emulsion. The current study was dedicated to the application of microbubble air flotation process for the removal of such oily emulsions for its characters of cost-effective, simple structure, high efficiency and no secondary pollution. The influence of several key parameters on the process removal efficiency was examined, namely, initial oil concentration, pH value of t
Activated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular colu
... Show MoreA study of taxonomic quality of algae attaching Three concert bridges built on the Tigris River within city of Baghdad including Al-Jadriyah Bridge in Al-Jadriyah area and the Bab Al-Mu'adam Bridge in Al-Shalajiya area, while the third site included Al-Muthanna Bridge in north of Baghdad city, for the period from Autumn 2021 and Winter 2022. The study identified 114 species of 32 Genus in which the predominance of Bacillariophceae (74 species, 14 Genus) Followed by Cyanophyceae (30species, 12 Genus) and 10 species (6 Genus) of Chlorophyceae. The study showed an increase in species of Bacillariophceae, Cyanophyceae which has the ability to secretion gelatinous substances that enable it to stick to solid stand, the number of the larges
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreConcrete columns with hollow-core sections find widespread application owing to their excellent structural efficiency and efficient material utilization. However, corrosion poses a challenge in concrete buildings with steel reinforcement. This paper explores the possibility of using glass fiber-reinforced polymer (GFRP) reinforcement as a non-corrosive and economically viable substitute for steel reinforcement in short square hollow concrete columns. Twelve hollow short columns were meticulously prepared in the laboratory experiments and subjected to pure axial compressive loads until failure. All columns featured a hollow square section with exterior dimensions of (180 × 180) mm and 900 mm height. The columns were categorized into
... Show More
