Gypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilized soil have been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were introduced between layers and connected to the facing strips. The model was subjected to cyclic loading and the lateral deformation of facing strips and the vertical deformation were detected at different stages of loading cycles and different height of the facing strips using LVDT. The reference embankment model was that of reinforced pure soil under absorbed condition. For asphalt-stabilized soil, the cutback asphalt stabilized- soil model exhibit improvement in load carrying capacity by nine folds. It shows a reduction of 23% in vertical displacement under sustained load of 436 repetitions. For emulsion-stabilized soil, the reduction in vertical displacement was 38.5% under a sustained load of 950 cycles. The load carrying capacity was improved by twenty folds. The lateral displacement at the upper first and third layers were lower by 0.55% and 1.9% respectively when compared to cutback asphalt stabilized model
Soil movement resulting due unsupported excavation nearby axially loaded piles imposes significant structural troubles on geotechnical engineers especially for piles that are not designed to account for loss of lateral confinement. In this study the field excavation works of 7.0 m deep open tunnel was continuously followed up by the authors. The work is related to the project of developing the Army canal in the east of Baghdad city in Iraq. A number of selected points around the field excavation are installed on the ground surface at different horizontal distance. The elevation and coordinates of points are recorded during 23 days with excavation progress period. The field excavation process was numerically simulated by using the finite
... Show MoreThe discharged water from tannery plants is main source for pollution of soil and groundwater, especially in Nahrawan area. Water samples is collected from 10 sites of wells, discharged water and from using water in different levels of tannery and 7 soil samples from different sites inside factories area and outside it. The results shown that pH for samples of wells and discharged water were within allowable limits between 6.5- 8.5, except the value of pH recorded in the discharged water sample (after the addition of calcium hydroxide) was 12.8, as well as reached the highest value of total dissolved salts (TDS) 7800 ppm in same samples. It also reached its highest value of electrical conductivity (EC) 8200 μS/cm. The results showed tha
... Show MoreThis paper aims to investigate the flexural behavior of reinforced concrete beams considering fire resistance by adding Lightweight Expanded Clay Aggregates (LECA) to the concrete mix as partial coarse aggregate replacement. LECA is a type of porous clay with a uniform pore structure with fine, closed cells and hard, tightly sintered skin. The experimental work comprised four reinforced self-compacted concrete beams. All the specimens were identical in their geometrical layout of 1600×240×200 mm, reinforcement details, and support condition (simply supported). For all the beams, the main reinforcement was provided by two bars, each having a diameter of 12 mm, while a bar of 6 mm diameter was employed for the top and shear reinforc
... Show MoreObjective This study aimed to evaluate the effects of disinfectant solutions, namely, the alcoholic extract of Salvadora persica L. (A1 = 10% and A2 = 15%) and chlorhexidine digluconate (A3 = 2%), on the tear strength and hardness of room temperature vulcanizing (RTV) VST50F and heat temperature vulcanizing (HTV) Cosmesil M511 silicone elastomers before and after reinforcement with nanofillers (TiO2) and intrinsic pigment. Materials and Methods: A total of 320 specimens were prepared, with 160 specimens each for RTV and HTV silicone. Forty specimens were evaluated before disinfection and divided into two equal groups, namely, control (without additive) and experimental (with ad
The study was reflection of the impact of the widespread use of polymer Novolak composite reinforced Glass fiber and Asbestos fiber once again with weight fraction 60% on the physical properties, which included (Hardness, Compressive deformation, compressive modulus of elasticity, Flexural modulus of elasticity, Resilience modulus, the maximum of Flexural strength, Flexural strain energy and Shear strength inner layers); it is known how much important the media as a source of bacterial contamination, which contributes directly or indirectly in the process of aging of these materials. These Novolak composite reinforced, prepared by weight fraction of (10%) and (14%) of the Hexamethylene-tetraamine (HMTA) hardener material. It
... Show MoreIn the oil industry, the processing of vacuum residue has an important economic and environmental benefit. This work aims to produce industrial petroleum coke with light fuel fractions (gasoline, kerosene , gas oil) as the main product and de asphalted oil (DAO) as a side production from treatment secondary product matter of vacuum residue. Vacuum residue was produced from the bottom of vacuum distillation unit of the crude oil. Experimentally, the study investigated the effect of the thermal conversion process on (vacuum residue) as a raw material at temperature reaches to 500 °C, pressure 20 atm. and residence time for about 3 hours. The first step of this treatment is constructing a carbon steel batch re
... Show MoreThe structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr
... Show MoreThis paper deals with testing defected model piles in the soil in order to study their behavior. In this respect, the results of model pile tests are discussed either geotechnically or structurally according to the type of failure. Two parameters were studied in order to evaluate the general behavior of defective piles. These parameters include the defect location and the defect type for floating and end bearing pile. The results of the experimental work indicated that the critical case for floating pile is seen to be when the defect of (5%) at the first third of the pile length at which the decrease in the bearing capacity is about (21%), while the decrease in the bearing capacity is found to be (14%) and (10%), when
... Show MoreThis paper deals with testing defected model piles in the soil in order to study their behavior. In this respect, the results of model pile tests are discussed either geotechnically or structurally according to the type of failure.
Two parameters were studied in order to evaluate the general behavior of defective piles. These parameters include the defect location and the defect type for floating and end bearing pile. The results of the experimental work indicated that the critical case for floating pile is seen to be when the defect of (5%) at the first third of the pile length at which the decrease in the bearing capacity is about (21%), while the decrease in the bearing capacity is found to be (
... Show More