Gypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilized soil have been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were introduced between layers and connected to the facing strips. The model was subjected to cyclic loading and the lateral deformation of facing strips and the vertical deformation were detected at different stages of loading cycles and different height of the facing strips using LVDT. The reference embankment model was that of reinforced pure soil under absorbed condition. For asphalt-stabilized soil, the cutback asphalt stabilized- soil model exhibit improvement in load carrying capacity by nine folds. It shows a reduction of 23% in vertical displacement under sustained load of 436 repetitions. For emulsion-stabilized soil, the reduction in vertical displacement was 38.5% under a sustained load of 950 cycles. The load carrying capacity was improved by twenty folds. The lateral displacement at the upper first and third layers were lower by 0.55% and 1.9% respectively when compared to cutback asphalt stabilized model
Background: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreThe aim of this essay is to use a single-index model in developing and adjusting Fama-MacBeth. Penalized smoothing spline regression technique (SIMPLS) foresaw this adjustment. Two generalized cross-validation techniques, Generalized Cross Validation Grid (GGCV) and Generalized Cross Validation Fast (FGCV), anticipated the regular value of smoothing covered under this technique. Due to the two-steps nature of the Fama-MacBeth model, this estimation generated four estimates: SIMPLS(FGCV) - SIMPLS(FGCV), SIMPLS(FGCV) - SIM PLS(GGCV), SIMPLS(GGCV) - SIMPLS(FGCV), SIM PLS(GGCV) - SIM PLS(GGCV). Three-factor Fama-French model—market risk premium, size factor, value factor, and their implication for excess stock returns and portfolio return
... Show MoreIn this study, the behavior of square helical piles models (5×5) mm2 embedded in expansive soil bed overlaying a layer of sandy soil was investigated. The sand layer 200mm thickness was compacted into four sub layers in a steel container with diameter 400mm in size. Sandy soil layer was compacted into two relative densities 40% and 80%. The bed of ثءحties 40% and 80%.The bed of o00mm in size.Sandy soil layer was compacted into two relative densities 40% and 80%.The bed of oexpansive soil 300mm thickness was compacted into six sub layers on sandy soil layer. Model tests are performed with helical pile length 350mm, 400mm and 450mm and with helix diameter 15mm and 20mm. Also, one helix and double helix were
... Show MoreCompaction of triticale grain with three moisture contents (8%, 12%, and 16% wet basis) was measured at five applied pressures (0, 7, 14, 34, and 55 kPa). Bulk density increased with increasing pressure for all moisture contents and was significantly (p < 0.0001) dependent on both moisture content and applied pressure. A Verhulst logistic equation was found to model the changes in bulk density of triticale grain with R2 of 0.986. The model showed similar beha
Knowing the distribution of the mechanical rock properties and in-situ stresses for the field of interest is essential for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, subsidence and water/gas injection throughout the filed life cycle. Determining the rock's mechanical properties is challenging because they cannot be directly measured at the borehole. The recovered carbonate core samples are limited and only provide discrete data for specific depths. This study focuses on creating a detailed 1D geomechanical model of the Mishrif reservoir in the Nasriyah oil field to identify the fault regime type for each unit in the format
... Show MoreSn effect on the phase transformation behavior, microstructure, and micro hardness of equiatomic Ni-Ti shape memory alloy was studied. NiTi and NiTiSn alloys were produced using vacuum induction melting process with alloys composition (50% at. Ni, 50% at.Ti) and (Ni 48% at., Ti 50% at., Sn 2% at.). The characteristics of both alloys were investigated by utilizing Differential Scanning Calorimetry, X- ray Diffraction Analysis, Scanning Electron Microscope, optical microscope and vicker's micro hardness test. The results showed that adding Sn element leads to decrease the phase transformation temperatures evidently. Both alloy samples contain NiTi matrix phase and Ti2Ni secondary phase, but the Ti2Ni phase content dec
... Show Moreloaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter
