Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each parameter tested (i.e., tear strength, surface roughness, hardness, tensile strength and elongation percentage). Specimens were artificially aged in a weathering chamber for 150 h and then tested. Data were analyzed by ANOVA and Tukey’s honestly significant difference (HSD). Statistical significance was set to P ≤ 0.05. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were also conducted. Results and Discussion: SEM results showed that Y2O3 NPs were distributed well within the silicon matrix. FTIR results indicated that the NPs were physically dispersed within VST50F silicone without chemical interaction. After 150 h of accelerated artificial aging, adding Y2O3 NPs significantly increased the tear strength, hardness, surface roughness, and elongation percentage. Tensile strength increased non significantly. Conclusion: Adding Y2O3 NPs as fillers improved the mechanical properties of artificially aged maxillofacial silicone elastomer. Keywords: maxillofacial silicone, Y2O3, nanoparticles, fillers, artificial aging.
For the first time Iron tungstate semiconductor oxides films (FeWO4) was successfully synthesized simply by advanced controlled chemical spray pyrolysis technique, via employed double nozzle instead of single nozzle using tungstic acid and iron nitrate solutions at three different compositions and spray separately at same time on heated silicone (n-type) substrate at 600 °C, followed by annealing treatment for one hour at 500 °C. The crystal structure, microstructure and morphology properties of prepared films were studied by X-ray diffraction analysis (XRD), electron Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) respectively. According to characterization techniques, a material of well-crystallized monoclinic ph
... Show MoreAbstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
Cadmium oxide thin films were prepared by D.C magnetron plasma sputtering using different voltages (700, 800, 900, 1000, 1100 and 1200) Volt. The Cadmium oxide structural properties using XRD analysis for just a voltage of 1200 volt at room temperature after annealing in different temperatures (523 and 623) K were studied .The results show that the films prepared at room temperature have some peaks belong to cadmium element along the directions (002), (100), (102) and (103) while the other peaks along the directions of (111), (200) and (222) belong to cadmium oxide. Annealed samples display only cadmium oxide peaks. Also, the spectroscopic properties of plasma diagnostic for CdO thin films were determined and the results show that the el
... Show MoreThe corrosion behavior of Titanium in a simulated saliva solution was improved by Nanotubular Oxide via electrochemical anodizing treatment using three electrodes cell potentiostat at 37°C. The anodization treatment was achieved in a non-aqueous electrolyte with the following composition: 200mL ethylene glycol containing 0.6g NH4F and 10 ml of deionized water and using different applied directed voltage at 10°C and constant time of anodizing (15 min.). The anodized titanium layer was examined using SEM, and AFM technique.
The results showed that increasing applied voltage resulted in formation titanium oxide nanotubes with higher corrosion resistance
A reseach is carried out by using Alumina material type α-Al2O3 which has partical size 63μm doped with different percentage weight of MgO (0.1%,0.3%and0.5%) and by using dry press method to prepare the samples ,A force press 50KN used and sintering to 1500oC with soaking time of 6 hours. The physical properties were studied such as "Bulk density ,Porosity and water absorption "also the mechanical properties such as (hardness,compressive strength ), the result shows that the best ratio of maginsa(MgO) added to Alumina (Al2O3)is 0.5%and this worked to improve Physical and mechanical properties .
Biosynthesis of nanoparticles has received considerable attention due to the growing need to develop environmentally benign nanoparticle synthesis processes that do not use toxic chemicals. Therefore, biosynthetic methods employing both biological agents such as bacteria and fungus or plant extracts have emerged as a simple and a viable alternative to chemical synthetic and physical method .It is well known that many microbes produce an organic material either intracellular or extracellular which is playing important role in the remediation of toxic metals through reduction of metal ions and acting as interesting Nano factories. As a result, in the present study Ag NPs were syn
... Show MoreIn this work, a composite material was prepared from Low-density polyethylene (LDPE) with different weight percent of grain and calcinations kaolin at temperature of (850oC) using single screw extruder and a mixing machine operated at a temperature between (190-200oC). Some of mechanical and physical properties such as tensile strength, tensile strength at break, Young modulus, and elongation at break, shore hardness and water absorption were determined at different weight fraction of filler (0, 2, 7, 10 and 15%). It was found that the addition of filler increases the modulus of elasticity, elongation at break, shore hardness and impact strength; on other hand, it decreases the tensile strength and tensile strength
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
This study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show More