Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each parameter tested (i.e., tear strength, surface roughness, hardness, tensile strength and elongation percentage). Specimens were artificially aged in a weathering chamber for 150 h and then tested. Data were analyzed by ANOVA and Tukey’s honestly significant difference (HSD). Statistical significance was set to P ≤ 0.05. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were also conducted. Results and Discussion: SEM results showed that Y2O3 NPs were distributed well within the silicon matrix. FTIR results indicated that the NPs were physically dispersed within VST50F silicone without chemical interaction. After 150 h of accelerated artificial aging, adding Y2O3 NPs significantly increased the tear strength, hardness, surface roughness, and elongation percentage. Tensile strength increased non significantly. Conclusion: Adding Y2O3 NPs as fillers improved the mechanical properties of artificially aged maxillofacial silicone elastomer. Keywords: maxillofacial silicone, Y2O3, nanoparticles, fillers, artificial aging.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Staphylococcus haemolyticus is one of the most frequently isolated coagulase-negative staphylococci. The ability to form biofilm is considered as one of the most important virulence factors of coagulase negative staphylococci. There is only limited knowledge of the nature of S. haemolyticus biofilms. This study was aimed at evaluating the ability of S. haemolyticus strains to produce biofilm in the presence of copper oxide nanoparticles (CuONPs). The biological synthesis of nanoparticles is an environmentally friendly approach for large-scale production of nanoparticles. Copper oxide nanoparticles were produced in the current study from the S. haemolyticus viable cell filtrate. UV-visible (UV-Vis) spectroscopy, X-ray diffra
... Show MoreNanoparticles of Pb1-xCdxS within the composition of 0≤x≤1 were prepared from the reaction of aqueous solution of cadmium acetate, lead acetate, thiourea, and NaOH by chemical co-precipitation. The prepared samples were characterized by UV-Vis spectroscopy(in the range 300-1100nm) to study the optical properties, AFM and SEM to check the surface morphology(Roughness average and shape) and the particle size. XRD technique was used to determine the crystalline structure, XRD technique was used to determine the purity of the phase and the crystalline structure, The crystalline size average of the nanoparticles have been found to be 20.7, 15.48, 11.9, 11.8, and 13.65 nm for PbS, Pb0.75Cd0.25S,
... Show MoreThe present study aims to evaluate the effects of methotrexate (MTX) with and without vitamin A (Vit. A) on some biochemical parameters and histological structure in male rabbits liver. Twenty male rabbits weighing 1250-1480 gm were divided into four equal number groups. The first group was given 2 ml distilled water as control group. The second group was given MTX (20 mg/kg), the third group was given Vit. A (5000 IU), while the fourth group was given MTX (20 mg/kg) +Vit. A (5000 IU) in alternative days. Following four weeks of treatment, lipid profile total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), [low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL)]; in addition to thyroid hormones tr
... Show MoreVarious activities taking place within the city of Baghdad have significantly contributed to organic pollution in Rivers Tigris and Diyala. The present study aimed to assess some physical, chemical and biological aspects of six sites on Rivers Tigris and Diyala as they flow through the city of Baghdad. Monthly samples were collected for the period January to December, 2005. Marked differences in the physical and chemical characteristics of water were noted between the two rivers’ sites. Average values during the study period of dissolved oxygen, biochemical oxygen demand, particulate organic matter, nitrate, phosphate and total dissolved solids for Tigris and Diyala were 7.8,4.7; 2.4,10.4; 350.1,921.4;7.8,13.9;1.2,4.8;814,2176 mg / l re
... Show MoreLactococcus lactis ssp. lactis isolated from raw milk was used for titanium dioxide (TiO2) nanoparticles biosynthesis. Biosynthesized TiO2 nanoparticles were characterized using UV-vis spectroscopy, Atomic Force Microscopy (AFM) (1.97 nm), X-ray diffraction (XRD) appa-ratus, Field Emission Scanning Electron Microscopy (FE-SEM), Energy dispersive X-ray anal-ysis (EDX) spectra and Fourier Transform Infrared Spectroscopy (FTIR). Result was 408.21 cm-1 that belong to anatase Titania. L. lactis ssp. Lactis isolates had the ability to synthesize TiO2 nanoparticles, the characterization results presented that the biosynthesized nanoparti-cles were at wavelength (344-347) nm; approving the formation of anatase phase of TiO2 NPs; spherical c
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreIn this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreIn this study, pure SnO2 Nanoparticles doped with Cu were synthesized by a chemical precipitation method. Using SnCl2.2H2O, CuCl2.2H2O as raw materials, the materials were annealed at 550°C for 3 hours in order to improve crystallization. The XRD results showed that the samples crystallized in the tetragonal rutile type SnO2 stage. As the average SnO2 crystal size is pure 9nm and varies with the change of Cu doping (0.5%, 1%, 1.5%, 2%, 2.5%, 3%),( 8.35, 8.36, 8.67, 9 ,7, 8.86)nm respectively an increase in crystal size to 2.5% decreases at this rate and that the crystal of SnO2 does not change with the introduction of Cu, and S
... Show MoreThis investigation was carried out to examine the effect of replacing partial of flour by dried Lentils (Lens culinaris) to white flour in different percentages on the chemical, sensory and storage properties of the Laboratory bread. The results revealed that replacing 0% than wheat flour by lentil powder (1) control was high significan than the replacing 25 and 35% than wheat flour by lentil powder ( 4 and 5) in flavor and chewiness . The results of sensory evaluation showed that replacing 4 were high significan different than that of replacing 1 in external layer colour. Other replacing percentages, however, did not show significant differences of in comparison with control . In regards with chemical analysis of Iron and copper, i
... Show More