Abstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each parameter tested (i.e., tear strength, surface roughness, hardness, tensile strength and elongation percentage). Specimens were artificially aged in a weathering chamber for 150 h and then tested. Data were analyzed by ANOVA and Tukey’s honestly significant difference (HSD). Statistical significance was set to P ≤ 0.05. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were also conducted. Results and Discussion: SEM results showed that Y2O3 NPs were distributed well within the silicon matrix. FTIR results indicated that the NPs were physically dispersed within VST50F silicone without chemical interaction. After 150 h of accelerated artificial aging, adding Y2O3 NPs significantly increased the tear strength, hardness, surface roughness, and elongation percentage. Tensile strength increased non significantly. Conclusion: Adding Y2O3 NPs as fillers improved the mechanical properties of artificially aged maxillofacial silicone elastomer. Keywords: maxillofacial silicone, Y2O3, nanoparticles, fillers, artificial aging.
In the drilling and production operations, the effectiveness of cementing jobs is crucial for efficient progress. The compressive strength of oil well cement is a key characteristic that reflects its ability to withstand forceful conditions over time. This study evaluates and improves the compressive strength and thickening time of Iraqi oil well cement class G from Babylon cement factory using two types of additives (Nano Alumina and Synthetic Fiber) to comply with the American Petroleum Institute (API) specifications. The additives were used in different proportions, and a set of samples was prepared under different conditions. Compressive strength and thickening time measurements were taken under different conditions. The amoun
... Show MoreObjective: The goal of this research was to evaluate where selenium nanoparticles impact the activity of antibodies in immunized lambs with foot and mouth vaccines by modulating the immune system. Materials and Methods: Two groups of lambs of 3–4 months of age were injected with 1 ml of ARRIAH-VAC vaccine intramuscularly in the neck, five Lambs were given selenium nanoparticles (size 100 nm) oral administration of selenium nano dose of 0.1 mg/kg of body mass once every day for sixty days considered as group one (G1) while the other five used as control Group 2 (G2). Results: This resulted in the establishment of an immune response, as evidenced by a rise in antibody titer in the blood using the ELISA test for three serotypes A,
... Show MoreTwo years field experiment was carried out at Agricultural Fields, College of Agriculture, Baghdad University, Al-Jadriya during 2014-2015 and 2015-2016 to determine the effect of salinity of irrigation water on growth and grain yield of three oat cultivars. The experiments were laid out according to randomized complete blocks design having split plot arrangements with two factors; first factor included three oat cultivars (Shifaa, Hamel and Pimula) while the second factor included three levels of salinity of irrigation water (3, 6 and 9 dS.m-1 ) in addition to the control (river water with salinity level of 1.164 dS.m-1 ) with three replicates. Results revealed a significant effect of salinity of irrigation water on all studied traits. Mea
... Show MoreIn this research the hard chromium electroplating process, which is one of the common methods of overlay coating was used, by using chromium acid as source of chromium and sulphuric acid as catalyst since the ratio between chromic acid and sulphuric acid is (100 : 1) consequently. Plating process was made by applying current of density (40 Amp / dm2) and the range of solution temperature was (50 – 55oC) with different time periods (1-5 hr). A low carbon steel type (Ck15) was used as substrate for hard chromium electroplating. Solid carburization was carried out for hard chromium plating specimen at temperature (925oC) with time duration (2 hr) to be followed with quenching and tempering
... Show MoreIn this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic
... Show MoreUndoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology an
... Show MoreThe mechanical properties of fiber-reinforced-polymer (FRP)
composites are dependent on the type amount, and orientation of fiber that is selected for a particular service. There are many commercially available reinforcement forms to meet the design requirements of the user. The ability of failure in the fiber architecture allows for optimized performance of a product that saves both weight and cost ( 12).
A modem technology is adopted to produce fibers (glass, kevelar,
and carbon) reinforced composite by using unsaturated polyester, where different volume fraction of these fibers are used (0, 0.2, 0.4, 0.6, 0.8, I)
reinfor
... Show MoreIn research we prepared electrical conductive polymer mixture wich consisted of three polymers [pectin, poly vinyl acetate and poly Aniline] was prepared then doping silver nanoparticles. Meaning it was conducting research on the three stages the first is Preparing triple polymer blend , Preparing silver nanoparticles and Tchoub mix triple Article nanoparticles in different proportions to get (Nanopolymer composites), and Preparing and making chips complexes in (casting method) for the purpose of measuring electrical conductivity her. Also we examined samples spectrum infrared (FT-IR), X-ray diffraction), SEM microscope and atomic force microscopy AFM. Electrical conductivity of the device chips have been measured (LCR) resul
... Show MoreNi-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show More