Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
Learning the vocabulary of a language has great impact on acquiring that language. Many scholars in the field of language learning emphasize the importance of vocabulary as part of the learner's communicative competence, considering it the heart of language. One of the best methods of learning vocabulary is to focus on those words of high frequency. The present article is a corpus based approach to the study of vocabulary whereby the research data are analyzed quantitatively using the software program "AntWordprofiler". This program analyses new input research data in terms of already stored reliable corpora. The aim of this article is to find out whether the vocabularies used in the English textbook for Intermediate Schools in Iraq are con
... Show MoreAim: This study aimed to assessing orthodontic knowledge and attitude among general dentists and non-orthodontic specialists. Background: Early detection of orthodontic disorders is essentialin motivating patients to intervene prior to long term complications when the disorders are not recongised. Methods: A questionnaire was distributed amongst dentistsother than orthodontists. This questionnaire consisted of three sections. The first one aimed to collect demographic, educational level and practice type information. Further two sections consisted of closed-end questions designed to evaluateknowledge and attitude of orthodontics. Results: A total of 313 responses to the survey were submitted. No significant correlation was observed, e
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreProxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreSeismic inversion technique is applied to 3D seismic data to predict porosity property for carbonate Yamama Formation (Early Cretaceous) in an area located in southern Iraq. A workflow is designed to guide the manual procedure of inversion process. The inversion use a Model Based Inversion technique to convert 3D seismic data into 3D acoustic impedance depending on low frequency model and well data is the first step in the inversion with statistical control for each inversion stage. Then, training the 3D acoustic impedance volume, seismic data and porosity wells data with multi attribute transforms to find the best statistical attribute that is suitable to invert the point direct measurement of porosity from well to 3D porosity distribut
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreOne of the most interested problems that recently attracts many research investigations in Protein-protein interactions (PPI) networks is complex detection problem. Detecting natural divisions in such complex networks is proved to be extremely NP-hard problem wherein, recently, the field of Evolutionary Algorithms (EAs) reveals positive results. The contribution of this work is to introduce a heuristic operator, called protein-complex attraction and repulsion, which is especially tailored for the complex detection problem and to enable the EA to improve its detection ability. The proposed heuristic operator is designed to fine-grain the structure of a complex by dividing it into two more complexes, each being distinguished with a core pr
... Show More